
Computational Optics for Mobile Terminals
in Mass Production

Shiqi Chen , Ting Lin, Huajun Feng , Zhihai Xu , Qi Li , and Yueting Chen

Abstract—Correcting the optical aberrations and the manufacturing deviations of cameras is a challenging task. Due to the limitation

on volume and the demand for mass production, existing mobile terminals cannot rectify optical degradation. In this work, we

systematically construct the perturbed lens system model to illustrate the relationship between the deviated system parameters and

the spatial frequency response (SFR) measured from photographs. To further address this issue, an optimization framework is

proposed based on this model to build proxy cameras from the machining samples’ SFRs. Engaging with the proxy cameras, we

synthetic data pairs, which encode the optical aberrations and the random manufacturing biases, for training the learning-based

algorithms. In correcting aberration, although promising results have been shown recently with convolutional neural networks, they are

hard to generalize to stochastic machining biases. Therefore, we propose a dilated Omni-dimensional dynamic convolution (DOConv)

and implement it in post-processing to account for the manufacturing degradation. Extensive experiments which evaluate multiple

samples of two representative devices demonstrate that the proposed optimization framework accurately constructs the proxy camera.

And the dynamic processing model is well-adapted to manufacturing deviations of different cameras, realizing perfect computational

photography. The evaluation shows that the proposed method bridges the gap between optical design, system machining, and post-

processing pipeline, shedding light on the joint of image signal reception (lens and sensor) and image signal processing (ISP).

Index Terms—Optical tolerancing, imaging simulation, computational photography, dynamic convolution, mobile ISP systems

Ç

1 INTRODUCTION

IN the machining and assembly procedure of imaging sys-
tems, deflection and manufacturing bias affect the shape

and positions of lenses [1]. Even subtle shape or position
variations will introduce additional aberrations, which sig-
nificantly degrade the optical performance of cameras [2].
To be more specific, the deflection will lead to the point
spread function (PSF) difference (Fig. 1a) of the symmetrical
field-of-view (FoV), and the manufacturing deviation will
cause the overall decrease in SFR (Fig. 2c). Hence, analyzing
the biases between the ideal and manufacturing is a critical
issue in the optomechanical design of the imaging system,
and it is essential for improving processing quality and con-
trolling the cost [3], [4].

We hope to estimate the gap between the ideal design
and the produced devices, aiming for performing a targeted
restoration within ISP systems [5]. This line of research has
promoted significant processes recently [6]. Commercially,
existing optical design programs have integrated with

tolerance analysis to assess the performance of perturbed
systems [7] or calculate the bias range of each parameter
according to the measured indicator [8], e.g., modulation
transfer function (MTF). However, these tolerancing proce-
dures still face a few challenges for application in a specific
machining sample [1]. One issue is the tolerance, which is
generally selected empirically or according to the perfor-
mance requirements without considering the actual machin-
ing procedure [9]. Another challenge is the inherent gap
between the tolerancing indicator and the measurement of
SFR [10]. This theoretical difference leads to severer biases
predicted by tolerancing programs. In academia, represen-
tative works include local optimization [11], which modifies
the system parameters by the pixel-level difference of PSF.
As well as the end-to-end optical system optimization pro-
posed recently [12], [13], which optimizes the system with
image-to-image rendering or deep learning model. Never-
theless, the existing methods still suffer from several limita-
tions. For example, these optimizations are significantly
affected by the noise in actual measurement [14]. And the
differentiable framework requires a large volume of paired
data where the ideal image or the optical parameters and
the corresponding PSFs are tremendously complicated to
acquire [15].

This paper is devoted to a fundamental solution to ISP
systems - bridging the gap between optics and postprocess-
ing. We show an illustrative example in Fig. 1b, where the
measurements of manufacturing samples are slightly differ-
ent, yet the realized restorations are similar after processing.
The classical ISP system is a step-by-step process where
each module cascades with each other [16]. This separation
mitigates the processing difficulty of each module but
allows the slight errors accumulated in the subsequent
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operations [17]. To this end, recent works implement end-
to-end methods for the mapping from Bayer pattern data to
sRGB images [18]. However, the acquisition of densely-
labeled data specified for each camera is time-consuming,
and the enormous computational overhead is the critical
limitation of deploying it into mobile terminals [19].

In this work, we mainly focus on connecting the optical
design, the system manufacturing, and the ISP systems. A
perturbation model is proposed for describing the influence
of the deviated parameters on the geometric image evalua-
tion, e.g., SFR. Distinct from the indicator calculation
through exit pupil wavefront (used in optical design pro-
grams), we adopt the imaging simulation to obtain realistic
photographs and apply SFR to measure MTF, which follows
the process of image formation and index evaluation. It also
provides an optimization framework to estimate the per-
turbed parameters from the measured indicators. In this

way, a proxy camera, whose imaging results are close to
reality, is constructed. It acts as a bridge for the co-design of
the actual camera and the subsequent ISP.

Furthermore, we propose a brand new dynamic postpro-
cessing architecture based on DOConv, expecting to handle
the degradation of various system perturbations with one
model. Engaging with the imaging simulation of the proxy
camera, we encode the accumulated errors of cascaded
modules and the degradation of system perturbations into
the data pairs for the training of the dynamic model. This
model realizes the correction of various machining samples’
optical degradations with less computational overhead.
Our approach can be easily adapted into new camera devi-
ces at a penurious cost on indicator measurement, thus
bypassing the time-consuming paired data collection.

We evaluate the proposed method on two imaging sys-
tems: customized digital single-lens reflex (DSLR) cameras

Fig. 1. Manufacturing biases adaptation and comparisons. (a) centrosymmetric PSF calculated by the proxy camera of different machining samples
(Best viewed with zoom). (b) magnified comparisons of the photographs taken in the same scene. We show the measured degradation of each
Phone (converted to sRGB for visualization) and our restoration output from the same ISP pipeline. And the results of high-end DSLR cameras are
shown for reference (captured under same aperture for comparisons).

Fig. 2. Overview of the perturbed optical system model. (a) We simulate the imaging results of the ideal edge by the camera’s parameters (top) and
acquire the measured edge by photographing with real devices (bottom). (b) The procedure from edge profile to SFR goes through projection, differ-
ential, and DFT. In this way, we obtain the SFRA of ideal design and the measured edge (detailed in Section 3.1.2). (c) Set the measured SFRAs as
targets to optimize the system parameters and predict the proxy camera by damped least-squares iteration (detailed in Section 3.2).
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and Huawei Honor 20 Pro (Phone), with known ideal opti-
cal parameters of both cameras. The assessments include
the accuracy of constructing the proxy camera and the per-
turbation adaptability of the dynamic postprocessing model
as well as the benefits to downstream vision applications
(i.e., object detection, optical character recognition). Exten-
sive experiments demonstrate that our method has the
potential to link optical machining with postprocessing
for realizing targeted restorations. The results are on par
or sometimes even outperform the high-end DSLR lenses
(the restoration results of Phones are shown in Fig. 1).

Our main contributions are summarized as follows:

� We construct a perturbed optical systemmodel based
on the image formation process, which illustrates the
relationship between the perturbation of system
parameters and the measured SFR. We demonstrate
the advantage of the proposed perturbing model
over the existing optical tolerancing procedure.

� We propose an optimization method to infer the sys-
tem perturbation from the SFRs measured from
actual manufacturing samples, hoping to construct
proxy cameras whose imaging results are close to
reality. These proxy cameras are to generate the data
pairs that characterize the mapping of optical degra-
dation, thereby fast adapting to the data acquisition
of new devices in mass production.

� We propose a dilated Omni-dimensional dynamic
convolution (DOConv) and implement it into post-
processing to tackle spatially varying aberrations
and stochastic machining deviations. It can be
embedded into the existing ISP systems and correct
the errors accumulated by modules cascade.

This paper proceeds as follows. In Section 2, we review
the related works. Section 3 presents the optical perturba-
tion model and the optimization to construct the proxy cam-
era. The dynamic postprocessing pipeline is detailed in
Section 4. Quantitative and qualitative experimental analy-
ses of our approach are provided in Section 5. Section 6
explores the potential applications of the proposed method.
Conclusions and discussions are drawn in Section 7.

2 RELATED WORK

Optical degradation correction is a comprehensive mission
in computational photography, where algorithms and opti-
cal systems cooperate. The additional machining bias poses
a significant challenge to solving this problem. In this sec-
tion, we present an overview of end-to-end optical system
optimization and ISP systems.

2.1 End-to-End Optical System Optimization

Optical designers generally select the tolerance empirically
or according to the performance requirements where the sys-
tem bias is randomly sampled within tolerance to determine
statistical degradation in mass production [20]. However,
this process does not consider the actual machining proce-
dure, which is meaningless for a particular manufacturing
sample [1]. Besides the top-down tolerance analysis, consid-
erable works infer the system parameters by polynomial
(Zernike) fitting or convex optimization [7], [8], [21]. For

polynomial fitting, the predicted range is generally broader
than the actual for the multiple coefficients system [22].
Some works have taken advantage of the measured PSFs or
images to fine-tune the entire system and perform targeted
restoration [11]. However, the noise introduced in actual
measurement can easily affect them since these methods are
guided by the pixel-by-pixel mean squared errors (MSE)
evaluation [14]. Recently, some works proposed to jointly
optimize the optical parameters and the postprocessing sys-
tems in a differentiable manner, where the model of Fourier
Optics [23], the image-to-image rendering [12], the proxy
deep-learning model [13] are used to build the end-to-end
pipeline. However, the end-to-end optimizations have some
limitations when applied to complex systems with large FoV
(in-depth discussions in the supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/
TPAMI.2022.3200725).

We modify the ideal system to construct a proxy camera,
whose system bias may not be precise compared to the
actual device, but their imaging results are close. The pro-
posed method guides the optimization by the geometric
optical image evaluation, which is less susceptible to noise.
We demonstrate that our physical-based framework can
generate realistic imaging results for various machining
samples and work under different noise levels.

2.2 Mobile ISP Systems

Considerable efforts have been invested in image postpro-
cessing to correct optical degradation [24], [25], [26], [27],
[28], [29]. Traditional deconvolution approaches utilize mul-
tiple image priors for iterative or mutual optimization to
obtain the latent images [30], [31]. Unfortunately, they are
inefficient in dealing with spatially varying degradation
and thus have difficulty applying to real-time imaging [32].
The existing mobile ISP system divides the processing into
multiple steps: white balance [33], [34], [35], denoising [36],
[37], Bayer pattern interpolation [38], [39], [40], color correc-
tion [41], etc. Separating the task into independent modules
facilitates the processing overhead, but the error of one
module will be accumulated and magnified in subsequent
steps, resulting in the wrong outputs [18].

Recent works propose to replace the cascaded ISP sys-
tems with deep learning models to address this issue [19],
[42]. Such models are entirely data-driven and also have the
potential for real-time imaging. [18] proposes to collect the
data pairs by shooting the same scene with a mobile phone
and a high-end DSLR. However, this data construction is
time-consuming and has poor portability for new devices
[43]. Recent works exploit to obtain data pairs by imaging
simulation of an ideal system [28], but they do not consider
the machining bias introduced during manufacturing.
Therefore, there is a particular domain gap between the
training data and the real-shot images, resulting in unsatis-
fied generalization for any processing samples in the actual
scene [44].

Machining degradations introduced during camera pro-
duction increase the difficulty of postprocessing algorithms.
The deep learningmethods mentioned above are fixed in the
inference and cannot adaptively deal with the degradation
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of input features [45]. We noticed that many approaches
apply attention or transformer to endow the network with
dynamic processing ability [46], [47], [48], [49]. On a large
scale of data, these models have a better performance than
the static model, yet in the data with a relatively single distri-
bution, they tend to overfit [50], [51].

In this work, multiple proxy cameras are engaged to syn-
thesize realistic data for the training of the dynamic model.
The proposed method successfully restores the optical deg-
radation of complex distribution and realizes adaptive post-
processing of samples with different deviations.

3 PERTURBED OPTICAL SYSTEM MODEL

With the lens prescriptions and the actual manufacturing
sample, our goal is to construct a proxy camera whose
imaging results are relatively close to the manufactured
device. Different from the ideal designing procedure, geo-
metric optical image evaluation such as the SFR generally
suffers from the deviations introduced in manufacturing
and mounting assembly. Moreover, the discrete sampling
and noise of the sensor are non-negligible in measurement.
Therefore, in the following Section 3.1, we first analyze the
image formation procedure of the perturbed optical system,
aiming for constructing the relationship between the pertur-
bation of system parameters and the measured SFR. Then in
the Section 3.2, the method to build a proxy camera is pre-
sented in a detailed account.

3.1 Geometric Optical Image Evaluation

A general camera is primarily divided into the optical lens
and the photosensor, where the former gathers the scene
information and the latter records the intensity of the signal.
While due to the inevitable manufacturing deviation, the
scene rays collected by the camera will be deflected unex-
pectedly during propagation, resulting in degraded images
and unfavorable indicators. To model the perturbations of
the system as well as their influence on the SFR measure-
ment, we consider the case where an incident ray is traced
in a camera modeled with biased coefficients.

3.1.1 Perturbed System Coefficients

Ray-Surface Intersection. The spatial coordinates ðx; y; zÞ of an
incident ray are as follows:

x ¼ x0 þ ks; y ¼ y0 þ ls; z ¼ z0 þms; (1)

here s is the parameter of distance along the ray measured
from the source point ðx0; y0; z0Þ, and D ¼ ðk; l;mÞ are the
normalized direction vector. The general surface encoun-
tered in mobile camera may be represented by:

F ðx; y; zÞ ¼ z� ecr2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ ekÞec2r2q �

XN
j¼1

eA2jr
2j; (2)

where z is the coordinate along the optical axis. r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from a surface point to the optical

axis. ec is the perturbed vertex curvature and ek is the per-
turbed conic constant. eA2j is the 2jth perturbed power
aspherical coefficient where N is the total order of aspheric.
To determine the ray-surface intersection, we apply the

Newton-Raphson iteration method to find a value s such
that the coordinates value ðx; y; zÞ from Eq. (1) satisfy the
surface Eq. (2). In every iteration i, the distance parameter s
is updated by:

siþ1 ¼ si � F ðxi; yi; ziÞ=F 0ðxi; yi; ziÞ; (3)

where ðxi; yi; ziÞ ¼ ðx; y; zÞjsi and:

F 0ðXi; Yi; ZiÞ ¼ ðFxÞikþ ðFyÞilþ ðFzÞim; (4)

here ðFxÞi denotes @F=@x evaluated at ðxi; yi; ziÞ. Similar cal-
culations are performed with respect to ðFyÞi and ðFzÞi. The
iteration process is terminated with the value si when

jsi � si�1j < �0; (5)

where �0 is a small preassigned value that can be adjusted
according to the required accuracy. After the intersection is
determined, we follow the Snell’s law to carry out the direc-
tion vector after refraction:

en0 �D0 � r ¼ en �D� r; (6)

here en and en0 are the perturbed refractive indices of the
medium where the ray is incident and refracted, which is
modeled by the material perturbation of d-light (i.e., refrac-
tive index end and abbe number evd). For the detailed material
perturbation model, please refer to the supplementary file,
available online. D0 ¼ ðk0; l0;m0Þ is the unit vectors denoting
the direction of refracted ray. r ¼ ðK;L;MÞ is a normal vec-
tor of the surface at the intersection. Indicating by Eq. (6),
the coplanarity of vector D, D0, and r allows us to represent
D0 by the linear combination ofD and r:

D0 ¼ mDþ Gr; (7)

where m ¼ n=n0 and G is an undetermined multiplier.
Squaring and adding the component of Eq. (7), we obtain a
quadratic in G, whose analytical solution is easy to solve:

G2 þ 2aGþ b ¼ 0;

a ¼ mðkK þ lLþmMÞ=ðK2 þ L2 þM2Þ;
b ¼ ðm2 � 1Þ=ðK2 þ L2 þM2Þ;

(8)

Surface-to-Surface Transfer. Apart from the tracing procedure
in a rotationally symmetric system, the tilts of optical ele-
ments are significant factors to be reckoned with when light
propagates in a real camera. We model the incline of a sur-
face in terms of Euler angles, where three successive rota-
tions etzx, etyz, etxy are to switch the ray data between the
system of the optical axis and element:

x k

y l

z m

0
B@

1
CA ¼ R

x� x� k

y� y� l

z� z� m

0
B@

1
CA; (9)

here ðx�; y�; z�Þ is the origin of the reference system. And the
letters denoted by ð�Þ are the ray data of the transforming
system. R is expressed as follows:
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cos eg � sin eg 0

sin eg cos eg 0

0 0 1

0
B@

1
CA

1 0 0

0 cos eb � sin eb
0 sin eb cos eb

0
B@

1
CA

cos ea 0 � sin ea
0 1 0

sin ea 0 cos ea

0
B@

1
CA;

(10)

where ea ¼ etzx, eb ¼ etyz, eg ¼ etxy are the angles between the
reference system and the transforming system.

After system transformation, the propagation from one
surface to the next surface is first addressed by tracing the
ray following the perturbed thickness vector ed (represented
by the norm el and the direction cosine ðedx; edy; edzÞ):
s ¼ ðel � edz � zÞ=m; x ¼ xþ ks� el � edx; y ¼ yþ ls� el � edy; (11)

In this way, we model the perturbation of thickness and
decenter in themeanwhile. For the detailed decenter illustra-
tion, please refer to the supplementary file, available online.
After the propagation between two surfaces, the ray data is
transformed into the system of the latter surface by Eq. (9).
And the aforementioned steps are repeated for succeeding
surfaces in sequence until the sensor plane, where the ray
data and the optical path length of each ray are recorded.

In summary, the perturbed optical system as well as its
impact on incident ray are modeled through surface-by-sur-
face ray tracing. We consider the potential perturbation of
all optical elements to construct an authentic model based
on physical procedure (the specific configurations are listed
in the supplementary file, available online). The recorded ray
data is used to establish the link between perturbed coeffi-
cients and the SFR measurement, which will be illustrated
in the following.

3.1.2 SFR Measurement via Imaging Simulation

In the optical design process, the MTF of the imaging sys-
tem is obtained by Fourier transforming the continuous
wavefront on the exit pupil plane. However, in the geomet-
ric optical image evaluation, the SFR (equivalent to the sys-
tem’s MTF) is generally obtained by the Fourier transform
of the line spread function (LSF) captured by the sensor. As
demonstrated in the Appendix A of the supplementary file,
available online, the discrete sampling of the sensor and the
noise will make differences in SFR. Therefore, we adopt the
imaging simulation technique to synthesize a realistic edge
image to ensure the procedure of calculating SFR between
simulation and measurement is similar. In imaging simula-
tion, the diffraction effect caused by the optical aperture is
another content to be considered in addition to the aberra-
tions calculated by tracing. So we inverse the tracing ray
(calculated in Section 3.1.1) from the sensor plane to the exit
pupil and consider each ray as a source of the Huygens
wavelet. Denoting the coordinates of ray on pupil plane is
ðx0; y0; z0Þ and on the sensor plane is ðx00; y00; z00Þ, the complex
amplitude on the sensor is superpositioned by the complex
amplitude of spherical wavelet:

Ex00y00 ðlx0y0 ; rx00y00 ;KÞ ¼
X
y0

X
x0

a0
eiklx0y0

lx0y0

eikrx0y0

rx0y0
K; (12)

where lx0y0 is the optical path length from the source
ðx0; y0; z0Þ to ðx0; y0; z0Þ. k ¼ 2p=� and � is the wavelength of

the ray. rx00y00 ¼ ðx00 � x0; y00 � y0; z00 � z0Þ indicates the direc-
tion of wavelet’s propagation. K is the obliquity factor of
wavelet, which is defined as follows:

KðDx0y0 ; rx00y00 ;nÞ ¼
1

2
½ cos hn; rx00y00 i � cos hn;Dx0y0 i�; (13)

where n is the normal unit vector of the exit pupil plane and
cos h�; �i is the operation of computing the cosine value of
the two vectors. The relationships of n, Dx0y0 , and rx00y00 are
magnified in Fig. 2. The complex amplitude is multiplied
with its conjugate to obtain the intensity on sensor plane:

Ix00y00 ¼ Ex00y00 � E�x00y00 ; (14)

In this way, we obtain the PSF Ifovið�Þ at different wave-
lengths of this FoV. The imaging simulation of edge is:

Je ¼
Z
Ceð�Þ � Ifovið�Þd� � Le þNe: (15)

here Ceð�Þ is the sensor wavelength response. Je, Le, and Ne

are the observed edge, the latent ideal edge, and the sythetic
noise image, respectively. We refer readers to [28] for details
on imaging simulation implementation.

After simulating the degraded edge that resembles the
actual observation, we measure the SFR as the procedure
shown in Fig. 2b. First, we project all pixels along with the
inclination to obtain the edge spread function (ESF). Second,
a quarter of the pixel size pi is as the new sampling interval,
and all pixel values that fall within the same sampling inter-
val are averaged to represent the values of the resampling
interval i. This operation is the key to alleviate the influence of
noise. Third, we get LSF by the differentiation of ESF and
calculate the discrete Fourier transformation of LSF. The
normalized amplitude of the Fourier spectrum is the mea-
sured SFR. In this way, we construct a physical-based proce-
dure to bridge the gap between the perturbed system
parameters and the SFR measurement.

3.2 Proxy Camera Construction

In this section, we present an optimization framework to con-
struct a proxy camera so that its imaging simulation is similar
to the photograph of the target device. As illustrated in Sec-
tion 3.1, due to the highly nonlinear relationship between
SFR andperturbed systemparameters, it is impossible to pre-
dict the actual deviation of the camera analytically. So succes-
sive iterations are needed to approximate the solution.
However, directly setting the SFR sequence as the target is
unrealistic, where the computational overhead will increase
exponentially when the sampling density grows. Therefore,
SFR Area (SFRA), which is the area between the real mea-
sured SFR and the axis, is used as the target for optimization:

SFRA�fovi ¼ AreaðSFRÞ; (16)

We use the damped least-squares method to obtain the
system solution of proxy camera [52]. Let the perturbed
parameters illustrated in Section 3.1.1 denoted by
p1; p2; � � � ; pN , where N is the number of parameters. The
simulated SFRA calculation can be represented by:

SFRAfovi ¼ Area½Ffoviðp1; p2; � � � ; pNÞ�; (17)
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here Ffovi indicates the operation to calculate SFR by the
method detailed in Section 3.1. The damped merit function
fð~P Þ in matrix-vector form is constructed as follows:

fð~P Þ ¼ ~fT ~f þ �D~PTD~P; (18)

where � is the damped factor. D~P and ~f are as follows:

~Pkþ1 ¼ ðpkþ11 ; � � � ; pkþ1N ÞT; ~Pk ¼ ðpk1; � � � ; pkNÞT;
D~Pk ¼ ~Pkþ1 � ~Pk; ~f ¼ ðf1; f2; � � � ; fMÞT;

(19)

~Pkþ1 and ~Pk are the system parameters after k, kþ 1 itera-
tions. D~Pk is the predicted linearity correction. ~f is the dif-
ference vector, where fi ¼ SFRA�fovi � SFRAfovi and M is
the number of sampled FoVs. According to the extreme
value theory of multivariate function, the minimum of the
merit function is achieved where its gradient is zero:

grad fð~P Þ ¼ AT~f þ �D~P ¼ 0; (20)

here A 2 RM�N is the partial derivative matrix
(Amn ¼ @fm=@pn, where m 2 ½1;M� and n 2 ½1; N �), which
can be calculated by divided differences in implementation.

Unfortunately, the ~f is a non-linear function where the
variable ~P cannot be solved directly. Hence, linear approxi-
mation is made by the Taylor series of ~f at ~Pk:

f̂ ¼ ~fk þAD~Pk; (21)

where the ~fk is the ~f of deviated parameters ~Pk. We note
that the approximation only guarantee linear accuracy in a
small range of ~Pk, so damping is set on D~Pk to control the
step. Replacing the ~f in Eq. (20) by Eq. (21), we derive the
D~Pk after k iteration:

D~Pk ¼ �ðAT
k Ak þ �IÞ�1AT

k
~fk: (22)

here Ak is the A of ~Pk, I is the identity matrix. And the pre-
dicted system parameters are ~Pkþ1 ¼ ~Pk þ D~Pk after kþ 1
iteration.

Algorithm 1. Proxy Camera Construction

Require: System parameters ~P0 , Measured SFRA�fovi
1: k 0, and ~fk;Ak  Meritð~Pk; SFRA�foviÞ
2: while jjAT

k
~fk þ �D~Pkjj � 0 do

3: D~Pk  �ðAT
k Ak þ �IÞ�1AT

k
~fk

4: ~Pkþ1  ~Pk þ D~Pk

5: k kþ 1, and ~fk;Ak  Meritð~Pk; SFRA�foviÞ
6: end while
7: return~Pk

8: Function:Meritð~Pk; SFRA�foviÞ
9: for i=1:M do
10: Edge imaging simulation with Eqs. (1)–(15)
11: Measure SFRA from synthetic edge as Fig. 2b
12: ~fi  SFRA�fovi � SFRAfovi

13: for j=1:N do

14: Aij ¼ ð~fð� � � ; pkj þ Dpj; � � �Þ � ~fkÞ=Dpj
15: end for
16: end for
17: return~fk, Ak

We also note that each system parameter contributes dif-
ferently to the merit functions. Therefore, we dynamically
adjust the damping factor � of each parameter according to
the non-linearity of the solution D~P , which is detailed in the
supplementary file, available online. In this way, the optimi-
zation is performed from Fig. 2a to Fig. 2c until the gradient
of solution (Eq. (20)) is close to zero.

Altogether, we illustrate the perturbed optical system
model and the method to construct a proxy camera based
on the measurement of SFR. There are three significant advan-
tages between the proposed method and other end-to-end optimiz-
ing approaches in Section 2.1. First, our optimization framework
is insensitive to noise because of the resampling in SFR measure-
ment. Second, our imaging simulation considers the diffraction
effect caused by the optical aperture and therefore is more accurate
than bare ray tracing. Third, we consider the potential perturba-
tion of all elements which is more authentic in following the physi-
cal procedure (in-depth comparisons are presented in
supplementary file, available online). Hence, we engage the
proxy camera with the physical formation pipeline of raw
images to perform authentic imaging simulation, generating
the data pairs for deep-learning-based reconstruction.

4 DYNAMIC-PROCESSING ISP

To eliminate the camera-wise manufacturing deviations and
spatially varying optical aberrations, the ability of self-adap-
tive correction is necessary for the postprocessing pipeline.
Moreover, the computational overhead of the mobile termi-
nal puts a significant limit on the complexity of the model.
To this end, we propose a lightweight framework based on
dynamic convolution to meet the needs of adaptive process-
ing and the constraints in application. In the following Sec-
tion 4.1, we first illustrate the data preparation for the
training of the framework. Then in the Section 4.2, the pro-
posed postprocessing pipeline is detailed.

4.1 Data Preparation

Based on the virtual camera constructed in Section 3, we
construct the training data pairs by the imaging simulation
in Section 3.1.2. Since the exposure parameters of real pho-
tography are discrete, the dynamic range of the captured
raw image is not ideal. Therefore, we add luminosity com-
pression/decompression in simulation which is different
from the transformation in [28]. After obtaining the raw-like
image, the formation of the sensor observation with optical
degradation can be formulated as:

Jeðx; yÞ ¼
Z
Ceð�Þ � Ifoviðx; y; �Þd� � Leðx; yÞ þNe; (23)

here ðx; yÞ is the pixel coordinates on the sensor plane. And
the rest denotions are the same as Eq. (15). We note that the
performance of optical degradation on the raw image is lin-
ear and channel-irrelevant. So different from [28], we aban-
don the CCM and the gamma compression in the synthetic
pipeline after adding the degradation into the image.
Because these operations will introduce non-linearity and
cross-channel information, thus increasing the difficulty of
restoration. Because of the limited number of manufactur-
ing samples, the proxy cameras could not cover the distri-
bution of manufacturing deviation. So we regard the max
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bias of each system parameter as the tolerance and random
sample them to generate more virtual optical systems for
data generation. This augmentation allows the model to
learn the potential degradation and prevents overfitting. In
this way, we obtain the RAW-to-sRGB data pairs, which
characterize the mapping of optical degradation and encode
the accumulated errors of cascaded modules. The data pairs
not only follow the physical procedure of image formation
but also are friendly to the training of the deep-learning
method.

4.2 Dynamic Postprocessing based on DOConv

The stochastic manufacturing deviations and spatially vary-
ing optical aberrations cause different PSFs on the sensor
plane. However, the traditional convolution operation
strictly receives the feature by fixed weight and locations
around its center, which is hard to adapt to the stochastic
degradation and introduce relevant information into the out-
put. To this end, we propose a dynamic convolution model
for eliminating the optical degradation and embed it in the
traditional ISP pipeline to realize extreme quality computa-
tional imaging. Inspired by the idea in [47], we design the
dilated Omini-dimensional dynamic convolution (DOConv)
and implement it into a variant of UNet architecture. As
shown in Fig. 3, each DOConv has four weights, and their
dilations vary from 1 to 4 in implementation, aiming at per-
forming targeted feature acquisition.We reduce the stages of
the architecture to mitigate the computational overhead.
And the ResBlocks, whose internal components are the same
as the Block in [49], are applied in each scale to enhance the
expression ability. The model takes degraded raw-like data
as input and outputs restored images in the same domain.
Subsequently, the restorations are processed by the subse-
quent modules and supervised by the sRGB ground-truth.
Since the generated data pairs are pixel-to-pixel aligned and
cover all potential degrading distributions, it is sufficient to
train themodel only relying on fidelity losses:

LðuÞ ¼ 1

N

XN
n¼1
jjProcessðModelðJn

e ÞÞ � Lnjj22: (24)

where u denotes the learned parameters in the model. Jn
e are

the degraded raw image and Ln are the corresponding
sRGB ground-truths. Processð�Þ denotes the subsequent
operations after optical degradation correction.

5 EXPERIMENTS

We first roughly illustrate the experimental setting in Sec-
tion 5.1. In Section 5.2, comprehensive experiments are con-
ducted to demonstrate the theoretical advantage of the
proposed proxy camera construction. In Section 5.3, we
evaluate the strength of the proposed dynamic model when
tackling optical degradation. Finally, an in-depth ablation
study is presented in Section 5.4.

5.1 Experimental setting

To substantiate the authenticity of the proposed proxy cam-
era construction, we evaluate two devices, one is a custom-
ized DSLR camera, and another one is Huawei Honor 20
Pro (Phone). The optical prescriptions of both cameras are
known, and their system parameters are listed in the supple-
mentary file, available online. In edge measurement (Fig. 2a),
we rotate the targets at 9 	 12
 angles and take photos of
them. And the ideal edge is colored according to the
dynamic range of the measured edge. For SFRA measure-
ment (Fig. 2b), the sampled FoVs are the regions that evenly
divide the image into 15� 20. In training data construction,
we first calculate the PSFs of the proxy camera following
Eq. (14). Then the PSFs of different FoVs are used to degrade
the latent image as Eq. (15). We acquire the latent image by
adopting DIV2K [53] and rescaling these data to the resolu-
tion of the camera (DSLR is 4000� 6000 and Phone is
3000� 4000). In terms of the hyperparameters of training,
the channel of each layer is marked at the block bottom, the
model is trained with ADAM optimizer [54] (b1 ¼ 0:9, b2 ¼
0:999, � ¼ 10�8), and the learning rate starts at 10�4 then
halved every 10 epochs. The setting of dynamic convolution
is the same as [47]. For more implementation details about
the proposed framework, please refer to the supplementary
file, available online.

5.2 Authenticity of Proxy Camera Construction

5.2.1 Competing Methods

To demonstrate the advantages of the proposed approach,
we compare our method with these representative methods

1) The built-in tolerance analysis of optical design soft-
ware, i.e., MTF tolerance of CODEV�R [8].

2) Modify the optical parameters by the calibrated
PSFs, i.e., shih, et. al. [11].

Fig. 3. Overview of the dynamic postprocessing pipeline. (a) an optical degradation correction module is embedded into the ISP pipeline of mobile
terminal. (b) we propose a dynamic postprocessing model based on dilated Omni-dimensional dynamic convolution, aiming at self-adaptively tackling
the stochastic manufacturing deviation. All the layer configurations are marked with different colored blocks.
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3) Optimize the system by image-to-image rendering
through differentiable ray tracing, i.e., sun, et. al.
[12].

Since the tolerancing in commercial software only
derives the deviation range, we choose the prediction’s

median as the bias for each parameter. In the second

method, we use pixel-level MSE between the simulated and

measured PSFs to guide the optimization. Noting that there
are alternative end-to-end system optimization besides the

third method, we present an in-depth comparison in the

supplementary file, available online to illustrate the reason we

pick this method.

5.2.2 Quantitative and Qualitative Assessment

To illustrate the authenticity of the proposed optimization,
we evaluate the proximity of the proxy camera (by the MSE
between the simulated and the measured discrete SFR) and
the similarity of imaging (by SSIM [55] between images).
The indexes of all machining samples are averaged for com-
parison, and the ideal simulations are provided for refer-
ence. As shown in Table 1, the competing methods
generally perform better on the DSLR than on the Phone.
These phenomena attribute to 1) the aberration of DSLR
increases uniformly with the growth of FoV, yet the degra-
dation of Phone changes significantly, which increases the
difficulty in prediction; 2) the relative illumination of
PHONE decreases a lot in marginal FoV, resulting in a
declining Signal-to-Noise ratio (SNR). So for the optimizing
method that relies on pixel-level indicators (shih, et. al. and
sun, et. al.), it is challenging to extract undisturbed informa-
tion from actual noisy measurements. In terms of evaluation
metrics, our method constructs the proxy systems that are
the closest to the machined devices, especially in difficult
situations such as low SNR and highly non-uniformed
degradation.

The visualization of PSF calculation and the imaging sim-
ulation of all competing methods are shown in Fig. 4. Lim-
ited by the space, we only present the resampling PSFs and
imaging simulation of some FoVs. Moreover, the ideal sim-
ulation and the actual measurement are provided for refer-
ence, and the SSIM of each simulated patch is listed for
additional quantitive evaluation. As shown by the PSFs of
the same FoV, all methods roughly predict the eccentricity
of the device. We note that the degradation caused by the
predicted deviations of CODEV�R is more severe than the

TABLE 1
Quantitative Proximity Between Real Devices and Proxy

Camera

CAMERA Method MSE (�10�3) # SSIM "
FoV 0.1/0.5/0.9 FoV 0.1/0.5/0.9

DSLR Ideal 0.576/0.804/1.023 0.913/0.906/0.872
CODEV�R 0.521/0.764/1.242 0.899/0.874/0.833
shih, et. al. 0.374/0.714/0.958 0.951/0.932/0.917
sun, et. al. 0.407/0.708/0.924 0.942/0.929/0.920
Ours 0.382/0.698/0.877 0.946/0.938/0.922

Phone Ideal 0.814/1.621/1.768 0.896/0.854/0.806
CODEV�R 0.852/1.746/1.496 0.878/0.842/0.822
shih, et. al. 0.643/1.386/1.325 0.913/0.858/0.832
sun, et. al. 0.628/1.303/1.157 0.915/0.872/0.847
Ours 0.547/1.251/0.952 0.927/0.887/0.859

Note that the value is the average of all machining samples. The best and the
second-best indicators of each FoV are marked in red and blue.

Fig. 4. Qualitative evaluation on PSF and imaging simulation. We visualize the centrosymmetric PSFs (10�resampling for detailed comparisons) of
the proxy cameras constructed from one machining sample of the Phone (the measured PSFs are shown in the sensor resolution). For the proxy
camera, the resolutions of PSFs are 50, 50, 80, 80, and 120 of FoV 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. And in measurement, the resolutions of
PSFs are 5, 8, and 12 for FoV 0.1, 0.5, and 0.9. We present the imaging simulation results and their SSIM compared with actual measurements.
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actual measurement, which is because it calculates the influ-
ence of each system variable separately without considering
the combined impact of the entire lens. shih, et. al. and sun,
et. al. have poor accuracy when the FoV increases due to the
pixel-level metric disturbance introduced by the magnified
noise level in edge FoV. sun, et. al. obtains more accurate
simulation results than CODEV�R and shih, et. al.. But since
the ray tracing does not consider the diffraction of optical
aperture, its predicted perturbation is often larger than our
estimation, resulting in more significant degradation. By
contrast, our method produces accurate results not only on
visual similarity but also from quantitative assessment.
More discussions are presented in the supplementary file,
available online.

5.2.3 Noise Injection Influence

The crucial merit of our approach compared to optimizing
with pixel-level evaluation is that the measuring procedure
of SFRA is insensitive to the noise of actual photographs.
We analyze the statistical results when using pixel-level
MSE and SFRA as optimization objectives under different
noise situations. The left part and the right part of Fig. 6
show the different FoVs’ accuracy on the single-frame
image and the multi-frames image (superposed for denois-
ing), respectively. The evaluation in the upper part of Fig. 6
is the SFR at 0.5 Nyquist frequency, and the lower part is
the SSIM between the simulation and the actual photo-
graph. We note that the variance of noise (indicated by the
purple line) grows as the FoV increases because of the
decreasing illumination by lens shading. Thus the optimiza-
tion targeted with MSE is prone to severe fluctuations due
to this metric being easily affected by accidental errors
when the noise level increases. On the contrary, the pro-
posed method maintains similar-to-real SFR fluctuation and

higher SSIM evaluation under different noise levels. This
mainly benefits from the resampling ESF operation (projec-
ting all pixels along with the inclination and averaging the
values), which makes the SFRA insensitive to the noise and
provides stable guidance for our optimization.

5.3 Evaluation on Dynamic Postprocessing

5.3.1 Competing Methods

The performance of optical degradation on the image can be
integrated as the influences of spatially varying blur on dif-
ferent FoVs. Therefore, correcting the optical degradation
can be summarized as a deblurring task. we collect the
state-of-the-art deblurring algorithms for comparisons

1) Global deblurring method, i.e., scale recurrent net-
work (SRN) [56] and Self-Deblur (SD) [57].

2) Kernel-based deblurring method, i.e., kernel predic-
tion network (KPN) [58].

3) Dynamical-adjusted deblurring method, i.e., FoV
deformable network (FDN) [28].

For these algorithms, we apply the same RAW-to-sRGB
data for evaluation. The details of training and inference
procedure are presented in the supplementary file, available
online.

5.3.2 Results on non-uniform deblurring

To evaluate the ability of various methods to handle non-
uniform optical degradation, we train all the compared
methods on the data generated by one proxy camera.
Fig. 5 shows the various methods’ restoration in different
FoVs of real photographs and presents the BRISQUE [59]
and SMD2 [60] for evaluation. The quantitative evaluation
of non-uniform deblurring is provided in Table 2, where
the single sample of T is the assessment on one proxy

Fig. 5. Non-uniform deblurring on real photographs of Phone. We mark the corresponding regions with white boxes and present the indicators.
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camera. We apply the reference image quality assessments
(IQA), e.g., PSNR, SSIM [55], VIF [61], and LPIPS [62] to
evaluate synthetic data. And the non-reference IQAs, e.g.,
BRISQUE [59], NIQE [63] are assessing real photograph
because obtaining non-degraded reference of real photo is
impossible.

For the globally consistent deblurring method, it can be
seen that the deterioration is suppressed. However, since

the optical aberration is spatially variant, the restoration is a

compromise of each FoV: in the center FoV with less blur-

ring, ringing, and color artifacts shows up on the border of

objects, while in the case of severe degradation at the edge

of the image, the optical aberration is not fully corrected.

When it comes to the kernel-based method, KPN can cope

with the non-uniform degradation, benefiting from the abil-

ity to predict the spatially varying kernel according to the

input features. However, since the blurring is associated

with the FoV and these models are not aided by FoV

information, such methods are confused by the input fea-
tures and generate incorrect restoration results. For the
approach that adjusts processing according to the FoV,
FDN can better tackle the FoV-related optical aberration
and obtain competitive results when correcting a specific
camera (shown in Table 2). Our model realizes competitive
results in both visual quality and metrics. We note that we
outperform the FDN in BRISQUE, which may be because
this metric pays more attention to the details of the image.
The dynamic convolution model generally suffers from
overfitting when the data distribution is relatively singular.
But our method fits the degradation of the actual measure-
ment well when only depending on the synthetic data of
one proxy camera, which may be due to the dilation manner
so that different weights have different specializations for
adaptive processing.

5.3.3 Adaptation for Manufacturing Deviation

In mass production, there is no time to specifically train
each post-processing model for a particular camera. To this
end, the restoration must be able to cope with the stochastic
deviation introduced in manufacturing and assembly. To
evaluate the ability to tackle this task, we simultaneously
train the competing methods with the data generated by
various virtual cameras. Fig. 7a and Fig. 7b show the results
of different models dealing with the camera-wised degrada-
tion on the same scene. The measurement deteriorates more
unpredictably due to random manufacturing deviation
when the FoV increases, which enlarges the difficulty of res-
toration. Comparing the experimental results, we note that
the static model (weights are fixed after completing train-
ing) cannot fit well in the diverse deviation of real
manufacturing. In consequence, the static model fails to
tackle the different machining degradations between real
cameras, especially when FoV increases. Benefiting from
the dynamic convolution, our model adaptively restores the
degraded features and achieves better restoration results on
each camera. The SFR enhancement (shown in the right part
of Fig. 7a) demonstrates that the proposed method realizes
better and more stable restoration. Other methods suffer
from significant fluctuation when FoV increases. Additional

TABLE 2
Quantitative Results on Sythetic Data and Real Photographs

C T Method Evaluation on Synthetic Data Real Photographs T Evaluation on Synthetic Data Real Photographs

PSNR " SSIM " VIF " LPIPS # BRISQUE # NIQE # PSNR " SSIM " VIF " LPIPS # BRISQUE # NIQE #

DSLR

Single Sample

SNR 42.19 0.984 0.988 1.383 39.80 3.846

Multiple Samples

40.84 0.973 0.967 1.839 42.82 4.153

SD 42.58 0.988 0.989 1.178 38.51 3.258 40.97 0.976 0.970 1.678 40.88 3.868

KPN 41.86 0.987 0.982 1.186 43.28 3.729 40.57 0.977 0.966 1.523 45.86 4.257

FDN 43.12 0.992 0.996 0.757 40.57 2.924 41.94 0.985 0.987 1.212 42.89 3.505

Ours 43.03 0.991 0.993 0.924 36.56 3.213 42.12 0.986 0.990 1.241 38.88 3.431

Phone

SNR 33.26 0.957 0.943 2.264 43.27 4.674 30.17 0.928 0.907 3.248 47.91 5.347

SD 34.03 0.959 0.946 1.966 41.77 4.185 30.33 0.930 0.913 3.017 45.86 4.928

KPN 32.96 0.963 0.939 1.525 44.66 4.527 29.96 0.938 0.901 2.476 48.57 5.267

FDN 34.56 0.974 0.968 0.984 42.71 3.644 31.86 0.942 0.922 1.897 46.59 4.056

Ours 34.28 0.976 0.964 1.084 39.88 3.713 32.28 0.950 0.938 1.584 43.68 4.131

C denotes the evaluated platform. T is the training datasets, where single sample means the data pairs are synthetic by one proxy camera and multiple samples
means altogether evaluation on multiple virtual cameras. The best and the second-best indicators of each evaluation are marked in red and blue. We indicate the
better metrics with up/down arrows.

Fig. 6. Performance under different noise level. The left/right part shows
the accuracy of proxy camera construction under single/multiple frames.
The upper/lower part presents the MTF/SSIM evaluation. The noise
level is plotted in the purple line.
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quantitative evaluation of deviation adaptation presents in
Table 2. Other competing methods receive unfavorable
results when the data distribution becomes complicated,
while the proposed method maintains a high level.

5.4 Ablation Study

We first evaluate the prediction accuracy when ablating the
crucial modules of virtual camera prediction. Then compre-
hensive ablation studies are conducted on our proposed
method. Specifically, for the proxy camera construction: 1)
we ablate the imaging simulation and calculate MTF by the
continuous wavefront at the pupil plane. 2) we replace the
MTFA with the MTF at 0.5 Nyquist frequency. 3) we substi-
tute the dynamic damping strategy with a fixed damping
factor. For the dynamic restoration: 1) the dynamic convolu-
tion layers are replaced by the ordinary convolution. 2) the
dilation of each weight is the same; 3) encoded FoV infor-
mation is ablated and only inputting image feature.

As shown in Fig. 8, the accuracy of prediction is signifi-
cantly affected after ablating the imaging simulation mod-
ule, which is mainly due to the inherent difference between
the MTF calculation. One way is to compute by the continu-
ous wavefront at the pupil plane, and another way is to
obtain the SFR of the edge image (as demonstrated in the
supplementary file, available online). Moreover, using
SFRA for optimization alleviates the influence of the mea-
sured SFR’s singular value in some spatial frequencies. And
the dynamic damping ensures that the solution of perturbed
parameters is linear within the damping range. Both of
these modules facilitate the proposed framework more sta-
ble and efficient. For the evaluation of image restoration,
the improvements in prediction accuracy are positively

relevant. In the ablation of the reconstruction model,
dynamic convolution performs a better fitting than tradi-
tional convolution when the distribution of data is more
diverse. Meanwhile, the different dilations of weights also
facilitate the correction of spatially-variant degradation.
Finally, the encoded FoV information has a positive gain on
restoration since the degradation is strongly associated with
the pixel position on the sensor.

In the proposed dynamic-processing ISP, we deploy the
aberration recovery module between the Bayer interpola-
tion and luminance correction. Its output is manipulated by
the subsequent modules and compared with sRGB ground-
truth in training. To prove the rationality of this deploy-
ment, we conducted the following ablation experiments: 1)

Fig. 7. Adaptation for manufacturing deviation. (a) we show the magnified patch to illustrate the image quality mutation of Phone. The actual
checkers’ restoration of different machining samples are present for comparison. And we evaluate the average SFR (MTF) enhancements on the
machining samples of test set. (b) the natural photograph restoration when applied on different machining samples of Phone.

Fig. 8. Ablation study on the proxy camera construction (accuracy evalua-
tion on the SSIM between the simulated images and the natural photo-
graphs). And Ablation study on the whole pipeline (restoration assesment
on the test synthetic data sets).
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Construct raw-to-raw data without considering subsequent
operations for training; 2) Deploy the module at the end of
the pipeline to construct sRGB-to-sRGB pairs for training.
As shown in Fig. 9, the output of the model appears with
colored stripes in raw domain reconstruction, which is
because the network prediction does not take into account
the subsequent operations, resulting in slight errors in the
RAW domain are amplified in the subsequent processing.
Restoration in sRGB also faces challenges, where the color
noise is difficult to eliminate. This situation is because the
color correction overlaps the information of each channel,
which increases the difficulty of restoration. On the con-
trary, our method processes the input data in the RAW
domain and supervises the output in sRGB, aiming at cor-
recting the prediction error accumulated by the cascade
pipeline.

6 ANALYSIS

6.1 Comparisons with Built-in ISP

To demonstrate the significance of deploying the optical deg-
radation correction, we compare our results with the built-in
ISP. As shown in Fig. 10, the same JPEG compression

algorithm is applied for the sake of a fair comparison. Due to
the additional sharpening, the built-in ISP realizes similar
results to ours in the center (Fig. 10-1). Yet this globally con-
sistent operation fails to infer realistic features under severe
degradation. Therefore, the advantage of our model is evi-
dent when it comes to the edge of photographs. The pro-
posed pipeline adaptively restore the high-frequency details
of leaves (Fig. 10-2) and cords (marked with the red arrow in
Fig. 10-3) at the edge of FoV, which are smoothed out by the
built-in ISP. Therefore, our dynamic model is well compati-
ble with the existing ISP system and has the potential to
correct the prediction error accumulated by the cascade pipe-
line. Moreover, our method endows post-processing with
the ability to perform adaptive restoration according to the
spatial information and the image feature.

6.2 Comparisons with deeplearning-based ISP

We note that many advanced postprocessing methods
attempt to replace the entire ISP system with a deep learn-
ing model, called deep ISP. These methods rely on one com-
plex architecture to perform super-resolution (equivalent to
demosaic), brightness and color adjustment (equivalent to
white balance and color correction), denoising, reconstruc-
tion, etc. on the captured Bayer image, output the pixel-by-
pixel prediction. Due to the need to solve the altogether
problems, such deep learning models are engaged with
enormous parameters and are rough to implement into
mobile terminals. Based on the proposed image formation
simulation, we can also synthesize the data pairs from the
degraded Bayer raw image to the ideal sRGB ground truth.
Therefore, we train the advanced deep ISP model with the
synthetic Bayer-to-sRGB data and evaluate the model on
real-captured images. The comparisons of the deep ISP
model and the proposed method are shown in Fig. 11. One
can see in Fig. 11a, the PyNet cannot always predict the cor-
rect white balance gain when the scene is complicated,
resulting in a bluish color of the white bear (magnified in
the upper-left corner). Therefore, it is difficult for deep
learning models to predict per-channel gain only from input
features, let alone some metameric scenes. In view of this,
we use the auxiliary white balance from the traditional ISP
system to obtain the correct imaging result. We compare the
ability of detail resilience in Fig. 11b when the deep ISP
model predicts accurate gain and color correction. As
shown, the deep ISP cannot reconstruct detailed textures.
This situation is mainly due to the deep ISP model

Fig. 9. Ablation on the dynamic processing ISP. We evaluate the perfor-
mance when placing the optical degradation correction model at differ-
ent positions of ISP pipeline.

Fig. 10. Comparisons with built-in ISP. Note that the built-in ISP smooths out the cords, yet our method restores it (marked with the red arrow).
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integrating multiple objectives into one model and using the
same loss function to guide the restoration. The brightness
and color gap between input and ground truth has a crucial
influence on the fidelity loss, which will lead the model to
eliminate this mismatch in the first place while ignoring the
details of the image. In contrast, we separate each task and
implement a dynamic model which corrects the postpro-
cessing errors accumulated by the cascaded pipeline. There-
fore, our method can accurately restore the color and
brightness as well as the detailed information of the scene.

6.3 Application to Downstream Vision Tasks

The advantages of the proposed method, when applied to
photographic postprocessing, have been illustrated before.
We show that our pipeline could also be helpful for down-
stream computer vision applications, e.g., object detection,

and optical character recognition (OCR). For the evaluation
of these tasks, we follow the same pipeline as Fig. 3 to pro-
cess the captured photographs and conduct off-the-shelf
vision algorithms on the processed sRGB images. For com-
parison, we also show the results on the built-in ISP.

State-of-the-art methods are applied to the daily photos for
evaluation, including YOLOv5 [64] for object detection and
PaddleOCR [65] for OCR. In Figs. 12 and 13, we show the
comparisons of visual and numerical results. As shown in
Fig. 12, the detection with our pipeline accurately locates all
people and gives higher confidence. But the detection with
built-in ISP predicts the wrong location to some extent. When
applied to OCR, PaddleOCR precisely determine the text
regions and recognize text on our result, yet various errors
occur in the built-in ISP. In conclusion, our algorithm can
directly improve the performance of downstream vision
applications, eliminating the need to fine-tune the algorithm
for a specific camera.

7 CONCLUSION

We presented a perturbed camera model based on the image
formation process. And an optimization frameworkwas pres-
ent to construct a virtual proxy camera from actually mea-
sured indicators, whose imaging results are close to the actual
manufactured samples. With the proxy cameras from multi-
ple machining samples, we synthesized the data pairs with
complex degenerate distributions, aiming at encoding the
optical aberrations and the random bias introduced during
processing. Drawing from the dynamic convolution, we
applied a dynamic model to self-adaptively cope with manu-
factured cameras, where multiple samples of two typical
devices are evaluated to illustrate the benefits of the proposed
pipeline. By training only with synthetic data, we demon-
strated that our method successfully handles the system of
complex machining deviations, achieving perfect restoration
that outperforms the high-endDSLR camera.

Fig. 11. Comparisons with the deep-learning ISP. (a) the failure case of
the deep-learning ISP in white balance prediction. (b) evaluation on the
ability of detail preservation.

Fig. 12. Object detection with different post-processing. The proposed
method frees the SOTA detecting algorithms from fine-tuning for a spe-
cific camera in the implementation.

Fig. 13. OCR with different post-processing. We help the advanced OCR
framework for more accurate recognition and character position.
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Our work bridges the gap between optical design, sys-
tem manufacturing, and postprocessing pipeline. It is con-
venient to deploy the proposed model in the mass
production of arbitrary imaging devices. This work has
been applied to some mobile terminals to realize signifi-
cantly improved imaging. Nevertheless, some challenges
remain unsolved to deploy our technique in production.
First, for the specific system parameters and manufacturing
methods (grinding for DSLR lenses and injection molding
for cellphones), the introduced biases are complicated, ren-
dering manual adjustment of damping factors in optimiza-
tion. Not only that, many existing mobile terminals do not
equip with the optimization for operations other than con-
volution, e.g., attention, which leads to low efficiency in
mobile cameras. In conclusion, it is imperative to deploy an
optical degradation correction module to the ISP system. As
a bridge connecting the hardware system and the algorithm,
it is of great help to improve the imaging quality and facili-
tate the downstream computer vision applications.

ACKNOWLEDGMENTS

We thank Meijuan Bian from the facility platform of optical
engineering of Zhejiang University for instrument support.
We also thank Huawei for their support.

REFERENCES

[1] T. Lin and C. Cheng, “A novel opto-mechanical tolerance analysis
method for precision lens systems,” Precis. Eng., vol. 35, no. 3,
pp. 447–454, Jul. 2011.

[2] C.-C. Hsueh, P. D. Lin, and J. Sasian, “Worst-case-based method-
ology for tolerance analysis and tolerance allocation of optical sys-
tems,” Appl. Opt., vol. 49, no. 31, pp. 6179–6188, 2010.

[3] X. Hu and H. Hua, “Design and tolerance of a free-form optical
system for an optical see-through multi-focal-plane display,”
Appl. Opt., vol. 54, no. 33, pp. 9990–9999, Nov. 2015.

[4] Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, toler-
ance, and fabrication of an optical see-through head-mounted dis-
play with free-form surface elements,” Appl. Opt., vol. 52, no. 7,
pp. C88–C99, Mar. 2013.

[5] S. Jung, D.-H. Choi, B.-L. Choi, and J. H. Kim, “Tolerance optimi-
zation of a mobile phone camera lens system,” Appl. Opt., vol. 50,
no. 23, pp. 4688–4700, Aug. 2011.

[6] D. Malacara, Ed., Optical Shop Testing, 3rd ed., ser. Wiley Series in
Pure and Applied Optics.New York, NY, USA: Wiley, 2007.

[7] M. Rimmer, “Analysis of Perturbed Lens Systems,” Appl. Opt.,
vol. 9, no. 3, Mar. 1970, Art. no. 533.

[8] M. P. Rimmer, “A tolerancing procedure based on modulation
transfer function (MTF),” in SPIE, R. E. Fischer, Ed., San Diego,
Bellingham, WA, USA: SPIE, Dec. 1978, pp. 66–70.

[9] J.-H. Sun, “Tolerance reallocation of an optical zoom lens tomeetmul-
tiperformance criteria,” Appl. Opt., vol. 53, no. 29, pp. H233–H238,
Oct. 2014.

[10] E. A. Derby, C. G. Gordon, D. Vukobratovich, P. R. Yoder, and C.
Zweben, “Optomechanical engineering and vibration control,”
Optomechan. Eng. Vib. Control, vol. 3786, pp. 220–228, 1999.

[11] Y. Shih, B. Guenter, and N. Joshi, “Image enhancement using cali-
brated lens simulations,” in Proc. IEEE Int. Conf. Comput. Vis.,
2012, pp. 42–56.

[12] Q. Sun, C. Wang, Q. Fu, X. Dun, and W. Heidrich, “End-to-end
complex lens design with differentiate ray tracing,” ACM Trans.
Graph., vol. 40, no. 4, pp. 1–13, Aug. 2021.

[13] E. Tseng et al., “Differentiable compound optics and processing
pipeline optimization for end-to-end camera design,” ACM Trans.
Graph., vol. 40, no. 2, pp. 1–9, 2021.

[14] A.Mosleh, P. Green, E. Onzon, I. Begin, and J. P. Langlois, “Camera
intrinsic blur kernel estimation: A reliable framework,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 4961–4968.

[15] Z. Li, Q. Hou, Z. Wang, F. Tan, J. Liu, and W. Zhang, “End-to-end
learned single lens design using fast differentiable ray tracing,”
Opt. Lett., vol. 46, no. 21, Nov. 2021, Art. no. 5453.

[16] J. Nishimura, T. Gerasimow, R. Sushma, A. Sutic, C.-T. Wu, and
G. Michael, “Automatic ISP image quality tuning using nonlinear
optimization,” in Proc. 25th IEEE Int. Conf. Image Process., 2018,
pp. 2471–2475.

[17] F. Heide et al., “FlexISP: A flexible camera image processing
framework,” ACM Trans. Graph., vol. 33, no. 6, pp. 1–13, Nov.
2014.

[18] A. Ignatov, L. Van Gool, and R. Timofte, “Replacing mobile cam-
era ISP with a single deep learning model,” 2020, arXiv:
2002.05509.

[19] A. Ignatov et al., “NTIRE 2019 challenge on image enhancement:
Methods and results,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops, 2019, pp. 2224–2232.

[20] P. C. Foote and R. A. Woodson, “Lens design and tolerance analy-
sis methods and results*,” J. Opt. Soc. Amer., vol. 38, no. 7,
pp. 590–599, Jul. 1948.

[21] E. Tseng et al., “Neural nano-optics for high-quality thin lens
imaging,” Nature Commun., vol. 12, no. 1, Nov. 2021, Art. no. 6493.

[22] J. C. Feltz, “Development of the modulation transfer function and
contrast transfer function for discrete systems, particularly
charge-coupled devices [also Comment 35(7), 2105–2106 (July
1996)],” Opt. Eng., vol. 29, no. 8, pp. 893–904, 1990.

[23] H. Ikoma, C. M. Nguyen, C. A. Metzler, Y. Peng, and G. Wetz-
stein, “Depth from defocus with learned optics for imaging and
occlusion-aware depth estimation,” in Proc. IEEE Int. Conf. Com-
put. Photogr., 2021, pp. 1–12.

[24] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the
dark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3291–3300.

[25] X. Zhang, Q. Chen, R. Ng, and V. Koltun, “Zoom to learn, learn to
zoom,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 3762–3770.

[26] S. W. Hasinoff et al., “Burst photography for high dynamic range
and low-light imaging on mobile cameras,” ACM Trans. Graph.,
vol. 35, no. 6, Nov. 2016.

[27] Q. Yan et al., “Attention-guided network for ghost-free high
dynamic range imaging,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 1751–1760.

[28] S. Chen, H. Feng, D. Pan, Z. Xu, Q. Li, and Y. Chen, “Optical aber-
rations correction in postprocessing using imaging simulation,”
ACM Trans. Graph., vol. 40, no. 5, pp. 1–15, Sep. 2021.

[29] S. Chen, H. Feng, K. Gao, Z. Xu, and Y. Chen, “Extreme-quality
computational imaging via degradation framework,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 2632–2641.

[30] F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A.
Kolb, “High-quality computational imaging through simple
lenses,” ACM Trans. Graph., vol. 32, no. 5, pp. 1–14, Oct. 2013.

[31] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Blind image deblur-
ring using dark channel prior,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 1628–1636.

[32] T. Sun, Y. Peng, and W. Heidrich, “Revisiting cross-channel infor-
mation transfer for chromatic aberration correction,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 3248–3256.

[33] J. van deWeijer, T. Gevers, and A. Gijsenij, “Edge-based color con-
stancy,” IEEE Trans. Image Process., vol. 16, no. 9, pp. 2207–2214,
Sep. 2007.

[34] A. Gijsenij, T. Gevers, and J. van de Weijer, “Improving color con-
stancy by photometric edge weighting,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 5, pp. 918–929, May 2012.

[35] M. Afifi and M. S. Brown, “Deep white-balance editing,” in Proc.
IEEE/CVF Comput. Vis. Pattern Recognit., 2020, pp. 1394–1403.

[36] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for
image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2005, pp. 60–65.

[37] L. Condat, “A simple, fast and efficient approach to denoisaicking:
Joint demosaicking and denoising,” in Proc. IEEE Int. Conf. Image
Process., 2010, pp. 905–908.

[38] K. Hirakawa and T. Parks, “Adaptive homogeneity-directed
demosaicing algorithm,” IEEE Trans. Image Process., vol. 14, no. 3,
pp. 360–369, Mar. 2005.

[39] E. Dubois, “Filter design for adaptive frequency-domain bayer
demosaicking,” in Proc. IEEE Int. Conf. Image Process., 2006,
pp. 2705–2708.

4258 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on April 03,2023 at 06:29:54 UTC from IEEE Xplore.  Restrictions apply. 



[40] X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A system-
atic survey,” Proc. Vis. Commun. Image Process., vol. 6822, 2008,
Art. no. 68221J.

[41] N. Kwok, H. Shi, Q. Ha, G. Fang, S. Chen, and X. Jia,
“Simultaneous image color correction and enhancement using
particle swarm optimization,” Eng. Appl. Artif. Intell., vol. 26,
no. 10, pp. 2356–2371, 2013.

[42] K. Mei, J. Li, J. Zhang, H. Wu, J. Li, and R. Huang, “HighEr-resolu-
tion network for image demosaicing and enhancing,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshop, 2019, pp. 3441–3448.

[43] Z. Zhang, Y. Jiang, J. Jiang, X. Wang, P. Luo, and J. Gu, “STAR: A
structure-aware lightweight transformer for real-time image
enhancement,” in Proc. IEEE/CVF Int.. Comput. Vis., 2021,
pp. 4086–4095.

[44] Z. Liang, J. Cai, Z. Cao, and L. Zhang, “CameraNet: A two-stage
framework for effective camera ISP learning,” 2019, arXiv:
1908.01481.

[45] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “CondConv: Condi-
tionally parameterized convolutions for efficient inference,”
2020, arXiv: 1904.04971.

[46] Y. Zhang, J. Zhang, Q. Wang, and Z. Zhong, “DyNet: Dynamic
convolution for accelerating convolutional neural networks,”
2020, arXiv: 2004.10694.

[47] C. Li, A. Zhou, and A. Yao, “Omni-dimensional dynamic con-
volution,” in Proc. Int. Conf. Learn. Representations, 2021, pp. 1–8.

[48] Z. Liu et al., “Swin transformer: Hierarchical vision transformer
using shifted windows,” 2021, arXiv:2103.14030.

[49] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A convnet for the 2020s,” 2022, arXiv:2201.03545.

[50] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“SwinIR: Image restoration using swin transformer,”
2021, arXiv:2108.10257.

[51] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H.
Yang, “Restormer: Efficient transformer for high-resolution image
restoration,” 2021, arXiv:2111.09881.

[52] C. W. Wampler, “Manipulator inverse kinematic solutions based
on vector formulations and damped least-squares methods,”
IEEE Trans. Syst., Man, Cybern., vol. 16, no. 1, pp. 93–101, Jan. 1986.

[53] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating seg-
mentation algorithms and measuring ecological statistics,” in
Proc. 8th IEEE Int. Conf. Comput. Vis., 2001, pp. 416–423.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980.

[55] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[56] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, “Scale-recurrent net-
work for deep image deblurring,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 8174–8182.

[57] D. Ren, K. Zhang, Q. Wang, Q. Hu, and W. Zuo, “Neural blind
deconvolution using deep priors,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2020, pp. 3341–3350.

[58] Q. Guo et al., “EfficientDeRain: Learning pixel-wise dilation filter-
ing for high-efficiency single-image deraining,” 2020, arXiv:
2009.09238.

[59] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image
quality assessment in the spatial domain,” IEEE Trans. Image Pro-
cess., vol. 21, no. 12, pp. 4695–4708, Dec. 2012.

[60] E. Krotkov, “Focusing,” Int. J. Comput. Vis., vol. 1, no. 3, pp. 223–237,
Oct. 1988.

[61] H. Sheikh and A. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, Feb. 2006.

[62] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual met-
ric,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 586–595.

[63] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a
“completely blind” image quality analyzer,” IEEE Signal Process.
Lett., vol. 20, no. 3, pp. 209–212, Mar. 2012.

[64] G. Jocher, “ultralytics/yolov5: V3.1 - Bug Fixes and Performance
Improvements,” 2020. [Online]. Available: https://github.com/
ultralytics/yolov5

[65] Y. Du et al., “PP-OCRv2: Bag of tricks for ultra lightweight OCR
system,” 2021, arXiv:2109.03144.

Shiqi Chen received the BS degree with the
Hua-zhong University of Science and Technology,
Wuhan, China, in 2018. He is currently working
toward the PhD degree with the State Key Labo-
ratory of Modern Optical Instrumentation in Zhe-
jiang University, supervised by prof. H. Feng and
prof. Z. Xu. His research interests include compu-
tational photography and physical-based vision.

Ting Lin received the BS degree with the Beijing
Institute of Technology, in 2020. She is currently
working toward the master’s degree with the
State Key Laboratory of Modern Optical Instru-
mentation, Zhejiang University, supervised by
prof. Q. Li. Her research interests include image
restoration and computer vision.

Huajun Feng received the BS and MS degrees
from Zhejiang University, in 1983. Currently, he is
a professor with the State Key Laboratory of Mod-
ern Optical Instrumentation, Zhejiang University.
His research is in the field of imaging techniques,
imaging processing, precision testing technology,
and optical system design.

Zhihai Xu received the bachelor’s and master’s
degrees from Zhejiang University, in 1986 and
1989, respectively, and the PhD degree from Zhe-
jiang University, in 1996. Currently, he is a profes-
sor with the State Key Laboratory of Modern
Optical Instrumentation in Zhejiang University.
His research is in the field of optical remote sens-
ing and camera imaging chains.

Qi Li received the PhD degree in optical engi-
neering from Zhejiang University, in 2004. Cur-
rently, he is a professor with the State Key
Laboratory of Modern Optical Instrumentation,
Zhejiang University. His research is in the field of
optical system design and imaging techniques.

Yueting Chen received the bachelor’s degree
and doctor’s degree in Zhejiang University, in
2004 and 2009, respectively. Currently, he is a
lecturer with the State Key Laboratory of Modern
Optical Instrumentation in ZJU. His research is in
the field of computational imaging and optical
imaging.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHEN ETAL.: COMPUTATIONALOPTICS FOR MOBILE TERMINALS IN MASS PRODUCTION 4259

Authorized licensed use limited to: Zhejiang University. Downloaded on April 03,2023 at 06:29:54 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


