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To overcome the problems of imaging speed and bulky volume of the traditional hyperspectral imaging systems, 

the recently proposed compact, snapshot hyperspectral imaging system with diffracted rotation has attracted a 

lot of interest. Due to the severe degradation of the diffracted rotation blurred image, the restored hyperspectral 

image (HSI) suffers from a lack of spatial detail information and spectral accuracy. To improve the quality of 

the reconstructed HSI, we present a joint imaging system of diffractive imaging and clear imaging as well as a 

convolutional neural network (CNN) based method with two input branches for HSI reconstruction. In the recon- 

struction network, we develop a feature extraction block (FEB) to extract the features of the two input images, 

respectively. Subsequently, a double residual block (DRB) is designed to fuse and reconstruct the extracted fea- 

tures. Experimental results show that HSI with high spatial resolution and spectral accuracy can be reconstructed. 

Our method outperforms the state-of-the-art methods in terms of quantitative metrics and visual quality. 
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. Introduction 

Spectral imaging can simultaneously obtain 3D data cubes includ-

ng the target’s 2D spatial and 1D spectral information. Since different

bjects have varied spectral characteristics, spectral imaging has been

idely used in scientific research and industry, such as agriculture [1,2] ,

emote sensing [3,4] , food safety inspection [5] , and cultural heritage

esearch [6,7] . Traditional hyperspectral imaging systems typically rely

n bulky optical systems, movable parts, and long exposure time, re-

ulting in limited application scenarios. Recent years have seen the de-

elopment of snapshot hyperspectral imaging systems that can obtain

pectral images without any temporal or spatial scanning, especially

omputed tomography imaging spectrometry (CTIS) [8,9] , coded aper-

ure snapshot spectral imaging (CASSI) [10,11] systems. These systems,

owever, are still based on traditional geometric optical systems; more-

ver, their bulky volume and weight limit their implementation in many

cenarios with high portability and stability requirements. Jeon et al.

12] proposed a diffraction-based snapshot hyperspectral imaging sys-

em to address the limits of mobility, weight, and volume. A diffractive

ptical element (DOE) with spectrally-varying point spread functions

PSFs) is utilized to replace the common optical elements (prism, relay

enses, imaging lenses, etc. ) in conventional systems, and the dispersion,

s well as imaging, are accomplished simultaneously by the single thin

OE. Since the PSFs in different spectral channels have similar shapes
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ut different rotation angles, providing the possibility of reconstructing

SIs from diffraction blurred images. 

However, the reconstruction of HSIs demands a considerable com-

utational cost, and the quality of the reconstruction results usually suf-

ers from the severe degradation of the captured images. At the same

ime, clear RGB imaging has been well developed and contains rich spa-

ial information. Restoring spectral images directly from RGB images is

everely ill-posed and needs the help of prior knowledge [13,14] . As

entioned above, high-quality HSIs cannot be recovered from either

iffraction blurred or clear images. To improve the quality of recon-

tructed HSIs, we propose a joint imaging system of diffractive imag-

ng and clear imaging. In the joint imaging system, diffraction blurred

mages imply much spectral information but have a low spatial reso-

ution. On the contrary, clear images have fewer spectral features but

ontain rich spatial detail information. Integrating the features of these

wo kinds of images, we present an HSIs reconstruction neural network

ased on the fusion reconstruction of diffraction blurred images and

lear images. 

The proposed network has two input branches, with diffraction

lurred images and clear images as the inputs, respectively. The sub-

etworks of the two branches perform feature extraction on the input

mages, and after feature fusion and reconstruction, a 3D data cube

ith high quality is obtained. Compared with traditional methods, our

ethod significantly improves the quality of reconstruction outcomes. 
ber 2022 
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Our contributions can be summarized as follows. 

• We propose a joint diffractive imaging and clear imaging system that

can provide hyperspectral images with high spatial resolution and

spectral precision by fusing and reconstructing the images captured

by the two imaging branches. 
• We propose a feature extraction block (FEB) and a double residual

block (DRB) based on the two-branch network framework, which

effectively improve the network’s capability to reconstruct hyper-

spectral images. 
• Extensive experiments show that our method outperforms other

state-of-the-art approaches in terms of PSNR, SSIM, and SAM met-

rics. 

The rest of the paper is organized as follows. Section 2 overview

yperspectral imaging systems and some available fusion-based recon-

truction methods. In Section 3 , we present the joint imaging system’s

maging model and image formation, particularly the diffractive imag-

ng branch. The architecture of our fusion-based reconstruction network

s detailed in Section 4 . Section 5 details our experiments on publicly

vailable datasets and compares our method with other state-of-the-art

ethods. Finally, the paper is concluded in Section 6 . 

. Related work 

.1. Hyperspectral imaging systems 

Conventional hyperspectral imaging systems can only obtain one-

imensional spectral or two-dimensional spatial information through

 single-shot. Scanning-based systems typically obtain spectral data

ubes by scanning with the help of slits [15,16] , dispersive elements,

r narrow-band filters [17–19] . Since scanning is required, the applica-

ions of these systems in dynamic scenarios are pretty limited. In con-

rast, our method can capture a diffraction blurred image and a clear

mage through a single-shot and subsequently obtain HSI by reconstruc-

ion, enabling snapshot hyperspectral imaging. 

To counter the limitations of scanning systems, computed tomog-

aphy imaging spectrometry (CTIS) [8,9] uses dispersive elements to

roject incident light with varying spectral compositions to different

reas on the image plane. Tomographic reconstruction techniques can

ecover the spatial and spectral information mixed on the image plane.

oded aperture snapshot spectral imaging (CASSI) [10,11,20] based on

ompressed sensing theory was introduced to capture dynamic scenes

nd realize snapshot measurement. In recent years, numerous efforts

ave been made to optimize the CASSI system. A digital micromirror

evice (DMD) was proposed for aperture encoding, offering the poten-

ial for dynamic encoding [21] . Colored coded aperture has been pre-

ented as an alternative to conventional binary coded aperture, which

an minimize the number of captures while improving the quality of re-

onstruction results [22,23] . Wang et al. [24] introduced a dual-camera

esign into CASSI, and the input beam is divided into two through a

eam splitter. With the advancement of neural networks, the optimiza-

ion of CASSI systems has primarily concentrated on improving the re-

onstruction algorithm in recent years [11,25,26] . However, due to the

ASSI’s sophisticated optical system, it can only be utilized for labora-

ory spectral imaging. In contrast, our method has a simpler and more

ompact imaging system with better mobility. 

Recent years have seen the introduction of neural networks into

omputational imaging, and many compact snapshot spectral imaging

ystems have emerged. Jeon et al. [12] proposed a diffractive imag-

ng lens that leads to an anisotropic shape of spectrally-varying PSFs

nd can achieve imaging and dispersion with a single DOE and a bare

mage sensor. Mikko et al. [27] proposed using a regular digital cam-

ra equipped with a diffraction grating element consisting of an array

f equally spaced horizontal and vertical slits, using machine learning

o reconstruct HSI. Jian et al. [28] proposed employing reconfigurable

etasurface supercells to encode the incident spectrum and integrating
2 
umerous pixels into a micro spectrometer to enable one-shot ultraspec-

ral imaging. Zhang et al. [29] developed a deeply learned broadband en-

oding stochastic hyperspectral camera, in which a deep neural network

s used to design filters and reconstruct spectra. Using the end-to-end

esign framework, Baek et al. [30] proposed a differentiable pipeline

hat includes a wave-optics simulation and a hyperspectral-depth image

econstruction. However, HSIs obtained by these methods suffer from

oor spatial resolution and spectral accuracy. Our method can recon-

truct HSIs with more accurate spatial and spectral information. 

.2. Hyperspectral image recovery based on fusion 

Despite the fact that hyperspectral images contain spectral informa-

ion, their spatial resolution is relatively low. Images captured by normal

ameras generally have a high spatial resolution. Efforts have been made

o improve the quality of hyperspectral images using high-resolution im-

ges of the same field of view (FOV). 

Pansharpening Directly obtaining multispectral (MS) or hyperspec-

ral (HS) images is challenging in remote sensing. Pansharpening gen-

rates high-resolution MS images from high spatial resolution single

and panchromatic (PAN) images and low spatial resolution MS im-

ges captured simultaneously by various sensors. Multiscale decomposi-

ion was performed to inject high-frequency spatial details into spectral

mages [31,32] . Based on sparse representation theory, a pansharpen-

ng method was proposed from the perspective of compressed sensing

33] . The traditional fusion methods have demonstrated effectiveness,

nd the MS image pansharpening also benefits from CNN. Masi et al.

34] first applied CNN to pansharpening by using a simple and effective

hree-layer architecture. Liu et al. [35] proposed to develop an encoder

ttention module in the feature extraction part to better utilize the spec-

ral and spatial features of MS and PAN images. The network with two

ranches was proposed to extract the features of PAN and MS images,

espectively [36] . 

Fusion-based method in CASSI Inspired by pansharpening, the CASSI

ystem also adds an imaging path to obtain additional spatial detail in-

ormation. Dual-camera design was first introduced to CASSI by Wang

t al. [24] . Based on the dual-camera design, Zhang et al. [37] proposed

o use coded images and external learning to learn the spatial-spectral

orrelation of HS images and utilize normal images and internal learn-

ng to guarantee generalization ability. Tao et al. [20] proposed utilizing

 dictionary-based algorithm and guided filtering to overcome the block

ffect and blurring common in other related works. 

. System Configuration 

In this section, we first describe our diffractive imaging and clear

maging combined imaging system. Then we introduce the diffractive

maging model and the image formation of two branches. The schematic

f the joint diffractive rotation and clear imaging system is shown in

ig. 1 . The imaging light path is divided into two branches by a beam

plitter, one of which obtains blurred images with diffracted rotation

hrough the diffractive imaging system, and the another obtains clear

GB images through the normal imaging system. 

.1. Diffractive imaging model 

Consider the diffractive imaging model depicted in Fig. 2 . Assume

hat a point light source illuminates the imaging system consisting of a

OE and an image sensor at depth 𝑧 , the intensity distribution on the

ensor is the PSF of the system. 

The incident light field of wavelength 𝜆 emitted by the point light

ource in front of the DOE can be expressed as 

 0 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) 𝑒 𝑖𝜙0 ( 𝑥,𝑦 ) , (1)

here 𝐴 ( 𝑥, 𝑦 ) is the amplitude, 𝜙 ( 𝑥, 𝑦 ) is the phase. 
0 
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Fig. 1. Schematic of the joint hyperspectral imaging system. The two imaging branches can provide diffraction blurred images and normal clear images, respectively. 

Fig. 2. Schematic diagram of forward propagation model in diffractive imaging. 
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After the phase modulation of the DOE, the light filed passing

hrough the DOE can be formulated as 

 1 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) 𝑒 𝑖 ( 𝜙0 ( 𝑥,𝑦 )+ 𝜙ℎ ( 𝑥,𝑦 )) , (2)

here 𝜙ℎ ( 𝑥, 𝑦 ) is the modulation term determined by the surface profile

 ( 𝑥, 𝑦 ) of the DOE, and can be expressed as 

ℎ ( 𝑥, 𝑦 ) = 

2 𝜋
𝜆
Δ𝑛 𝜆ℎ ( 𝑥, 𝑦 ) , (3)

here Δ𝑛 𝜆 is difference between the refractive index of the substrate of

OE and air at wavelength 𝜆. 

Since the imaging distance 𝑧 satisfies 𝑧 ≫ 𝜆, the light field on the

ensor can be obtained from the light field 𝑢 1 ( 𝑥, 𝑦 ) by the Fresnel prop-

gation [38] : 

 2 ( 𝑥 ′, 𝑦 ′) = 

𝑒 𝑖𝑘𝑧 

𝑖𝜆𝑧 ∬ 𝑢 1 ( 𝑥, 𝑦 ) ⋅ 𝑒 
𝑖𝑘 

2 𝑧 {( 𝑥 − 𝑥 
′) 2 +( 𝑦 − 𝑦 ′) 2 } 

𝑑 𝑥𝑑 𝑦, (4)

here 𝑘 = 2 𝜋∕ 𝜆 is the wavenumber. 

Assume that the imaging system is focused at infinity, the incident

ight field can be approximated as a plane wave. This means that 𝐴 ( 𝑥, 𝑦 ) ,
0 ( 𝑥, 𝑦 ) in Eq. 1 are constant terms. The incident plane wave can be

escribed as 𝑢 0 ( 𝑥, 𝑦 ) = 𝐴𝑒 𝑖𝜙0 . 

Substitute the simplified incident light field into Eq. 2 and Eq. 4 , the

q. 4 can be rewritten as 

 2 ( 𝑥 ′, 𝑦 ′) = 

𝑒 𝑖𝑘𝑧 

𝑖𝜆𝑧 ∬ 𝐴𝑒 𝑖 { 𝜙0 + 𝜙ℎ ( 𝑥,𝑦 )} 𝑒 
𝑖𝑘 

2 𝑧 {( 𝑥 − 𝑥 
′) 2 +( 𝑦 − 𝑦 ′) 2 } 

𝑑 𝑥𝑑 𝑦. (5)

The intensity distribution on the image plane is the square of the light

eld, which represents the point spread function 𝑝 𝜆( 𝑥 ′, 𝑦 ′) of the sys-

em. By Eq. 5 , the point spread function can be described as the Fourier
3 
ransform of the product of the quadratic phase factor and the phase

odulation term: 

 𝜆( 𝑥 ′, 𝑦 ′) ∝
|||| 

[
𝐴𝑒 𝑖𝜙0 𝑒 𝑖𝜙ℎ ( 𝑥,𝑦 ) 𝑒 

𝑖𝑘 

2 𝑧 
(
𝑥 2 + 𝑦 2 

)]||||2 . (6)

.2. The design of DOE 

Consider the optical phase difference of two rays, a ray that passes

hrough the DOE center along the optical axis and a ray that passes

hrough a point on the DOE with coordinates ( 𝑥, 𝑦 ) . Assume that

 ( 𝑥, 𝑦 ) = Δℎ ( 𝑥, 𝑦 ) + ℎ 0 , where Δℎ ( 𝑥, 𝑦 ) is the height difference between

he DOE profile and the substrate, ℎ 0 is the height of the substrate. The

ptical path difference between the two rays is the outcome of the com-

ined effect of DOE profiles and geometrical paths: 

= Δ𝑛 𝜆Δℎ ( 𝑥, 𝑦 ) + 

√
𝑥 2 + 𝑦 2 + 𝑧 2 − 𝑧. (7)

To achieve the imaging function , the optical path difference should

atisfy the constructive interference: 

𝑛 𝜆Δℎ ( 𝑥, 𝑦 ) + 

√
𝑥 2 + 𝑦 2 + 𝑧 2 − 𝑧 = 𝑞𝜆, (8)

here 𝑞 is an integer. The Δℎ ( 𝑥, 𝑦 ) can be simplified as 

ℎ ( 𝑥, 𝑦 ) = 

𝑞𝜆 − ( 
√
𝑥 2 + 𝑦 2 + 𝑧 2 − 𝑧 ) 
Δ𝑛 𝜆

. (9)

To achieve the dispersion function , the height profile of DOE needs

o be specially designed for each wavelength along different angles. Con-

ert ( 𝑥, 𝑦 ) to polar coordinates ( 𝑟, 𝜃) , where 𝑟 is the distance from ( 𝑥, 𝑦 )
o (0 , 0) and 𝜃 is the rotation angle of the line from ( 𝑥, 𝑦 ) to (0 , 0) . The

ircular DOE is divided into 𝑁 equal parts to design for [ 𝜆min , 𝜆max ] . The

avelength corresponding to 𝜃 is formed as 

( 𝜃) = 

{ 

𝜆min + 

(
𝜆max − 𝜆min 

) 𝑁 
2 𝜋 𝜃 0 ≤ 𝜃 < 

2 𝜋
𝑁 

𝜆

(
𝜃 − 

2 𝜋
𝑁 

)
2 𝜋
𝑁 

≤ 𝜃 < 2 𝜋
. (10)

The 𝑁 is also called the number of wings. Finally the height differ-

nce Δℎ ( 𝑟, 𝜃) can be rewritten as 

ℎ ( 𝑟, 𝜃) = 

𝑞 𝜆 − ( 
√
𝑟 2 + 𝑧 2 − 𝑧 ) 
Δ𝑛 𝜆

. (11)

Further, the height profile of the DOE can be expressed as 

 ( 𝑟, 𝜃) = ℎ 0 + Δℎ ( 𝑟, 𝜃) . (12)

Fig. 3 illustrates the DOE design schematic and the corresponding

pectrally-varying PSFs. As shown in Fig. 3 (a), the entire DOE is com-

osed of two identical parts. Each part’s height profile at various angles
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Fig. 3. (a) is our DOE design, the diameter of DOE is 5mm. We utilize different colors to indicate the height of the DOE surface profile. (b) is the corresponding 

spectrally-varying PSFs in wavelength range from 400nm to 700nm. 
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s designed for the wavelength range 400nm-700nm. The PSFs shown

n Fig. 3 (b) have a similar shape, but instead, the PSFs rotate as the

avelength changes. The PSF rotates around 180 ◦ between 400nm and

00nm, which also confirms that the number of wings used in our design

s two. 

.3. Image Formation 

In the diffractive imaging branch , a RGB diffraction blurred image

 𝑐 ( 𝑥 ′, 𝑦 ′) can be obtained from a hyperspectral image 𝐼 𝜆( 𝑥 ′, 𝑦 ′) , where

he subscript 𝑐 ∈ { 𝑟, 𝑔, 𝑏 } represents the color channel. Suppose that

 𝑐 ( 𝜆) is the spectral response of the sensor and the spectrally-varying

SF can be represented as 𝑝 𝜆( 𝑥 ′, 𝑦 ′) . The blurred image 𝐽 𝑐 ( 𝑥 ′, 𝑦 ′) can be

epresented as 

 𝑐 ( 𝑥 ′, 𝑦 ′) = ∫ 𝜔 𝑐 ( 𝜆) ⋅ ( 𝐼 𝜆 ⊗ 𝑝 𝜆)( 𝑥 ′, 𝑦 ′) 𝑑𝜆, (13)

here ⊗ is defined as convolution operator. 

In the clear imaging branch , considering that when we construct

he dataset for network training, the publicly available hyperspectral

mage datasets themselves carry the effect of optical aberration, the col-

ected RGB clear image is the integral of the product of spectral response

 𝑐 ( 𝜆) and the HSI 𝐼 𝜆( 𝑥 ′, 𝑦 ′) , without any blur or dispersion. The clear im-

ge can be represented as 

 𝑐 ( 𝑥 ′, 𝑦 ′) = ∫ 𝜔 𝑐 ( 𝜆) ⋅ 𝐼 𝜆( 𝑥 ′, 𝑦 ′) 𝑑𝜆. (14)

. Spectral image reconstruction neural network 

A fusion reconstruction network with two input branches is pre-

ented to restore HSIs with high spatial resolution and spectral accuracy

rom diffraction blurred images and clear images. The network is built

n an encoder-decoder architecture, and its workflow can be divided

nto three stages: feature extraction, feature fusion, and HSI reconstruc-

ion. 

The network collects input from two branches during the feature ex-

raction stage. The input image for one branch is a diffraction blurred

mage, while the input image for the other is a normal clear image. The

ub-networks of the two branches have the same structure but differ-

nt weights. Following that, HSIs can be obtained through fusion and

econstruction. Fig. 4 illustrates the structure of our proposed network
4 
n detail, with different types of layers represented by various colored

locks. ”Conv(2,2) ” in Fig. 4 denotes a convolutional layer with kernel

ize = 2 and stride = 2. Similarly, ”Conv(3,1) ” denotes a convolutional

ayer with kernel size = 3 and stride = 1. 

.1. Feature extraction block 

Due to the severe degradation of the blurred images (typically about

0-50 pixels), we propose a feature extraction block (FEB) built of con-

olution layers with varying kernel sizes to extract features of different

cales. As shown in the bottom right corner of Fig. 4 , the input of the

EB first passes through a 3 ×3 convolutional layer, followed by four

onvolutional layers with kernel sizes of 7, 5, 3, 1 respectively. Em-

loying convolution kernels with diverse scales can fully perceive the

eatures of the image at the early stage of feature extraction, avoiding

mage structure degradation caused by multiple downsampling proce-

ures. To obtain the FEB output, the output of these four convolutional

ayers is concatenated and then fed into a 3 ×3 convolutional layer and

 Parametric Rectified Linear Unit (PReLU) [39] layer. 

.2. Double residual block 

We propose using double residual blocks (DRBs) in the feature fusion

nd hyperspectral image reconstruction stage to further increase the net-

ork’s capability. Since the difference between input and output in DRB

ight be enormous, we employ concatenation rather than element-wise

ddition as in the traditional residual unit [40] . As shown in the bottom

ight corner of Fig. 4 , assuming that the DRB’s input has the shape of

 ×𝐻 × 𝐶 , where 𝑊 , 𝐻 , and 𝐶 are width, height, and the number of

hannels, respectively, the input features of the second and third con-

olutional layers have the shape of 𝑊 ×𝐻 × 𝐶 and 𝑊 ×𝐻 × 2 𝐶 . The

utput scale of the DRB is 𝑊 ×𝐻 × 2 𝐶 . 

.3. Loss function 

The loss between the reconstructed hyperspectral images and the

orresponding ground truth is minimized to optimize the parameters of

he network. We use the mean absolute error (MAE) as the loss function.

pecifically, assuming that the input blurred image is expressed as 𝑋 𝐵 
𝑖 ,

he clear input image is expressed as 𝑋 𝐶 
𝑖 . The corresponding ground

ruth is expressed as 𝐼 𝑖 , the mapping of the network is denoted as ( ⋅) ,
𝐺 
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Fig. 4. The proposed neural network architecture. Different layers are represented by various colored blocks (bottom left). ”Conv(2,2) ” denotes a convolutional 

layer with kernel size = 2 and stride = 2 and ”Conv(3,1) ” denotes a convolutional layer with kernel size = 3 and stride = 1. The feature extraction block and double 

residual block are detailed in the bottom right corner. The number of channels per layer is marked. We use MAE loss to optimize the network parameters. 
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c  
hen the 𝓁 1 loss can be defined as: 

 1 = 

1 
𝑁 

𝑁 ∑
𝑖 

||( 𝑋 𝐵 
𝑖 , 𝑋 𝐶 

𝑖 ) − 𝐼 𝐺 
𝑖 ||, (15)

here 𝑁 is the number of samples in a mini-batch used for training. 

. Experiments and Discussion 

In this section, we first introduce the dataset construction method

nd the metrics for quantitative evaluation employed in our experiment.

hen the experimental implementation details are described, and the re-

onstruction results are presented in terms of image details and spectral

ccuracy. Finally, our method is compared with several state-of-the-art

ethods, including fusion and non-fusion. 

.1. Datasets and metrics 

For training and testing, we selected hyperspectral images from pub-

icly available ICVL [41] , KAIST [42] and CAVE [43] datasets. The spec-

ral range of ICVL and CAVE datasets are from 400nm to 700nm, while

he KAIST dataset ranges from 400nm to 720nm. All hyperspectral im-

ges have a spectral interval of 10nm. ICVL dataset has a spatial reso-

ution of about 1300 × 1392 and covers numerous outdoor scenes with

 shape of about 1300 × 1392 × 31 . KAIST dataset has a spatial resolu-

ion of 2704 × 3376 , and all the scenes are captured indoors with a black

ackground. The hyperspectral image in the KAIST dataset has a shape

f 2704 × 3376 × 33 . CAVE dataset has a spatial resolution of 512 × 512
nd contains many comparisons between real and fake objects. The hy-

erspectral image in the CAVE dataset has a shape of 512 × 512 × 31 . 
We randomly selected 31 images from the CAVE dataset, 21 from the

AIST dataset, and 158 images from the ICVL dataset for training. We

ampled 8,980 tensor patches of size 256 × 256 × 31 from the selected

yperspectral images. The other nine images in the KAIST dataset, as

ell as 20 images randomly selected from the ICVL dataset, were used

or testing. Gaussian noise was applied to all blurred and clear images
5 
uring training and testing with a mean value of 0 and a standard devi-

tion of 0.01. 

When constructing the dataset for training and testing, the pipeline

f diffraction blurred images and clear images is shown in Fig. 5 . We

ypically first convert the spectral image into CIEXYZ color space and

ubsequently into sRGB color space. Eq. 13 can be rephrased as 
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here { 𝐽 𝑋 , 𝐽 𝑌 , 𝐽 𝑍 } is the XYZ representation of the blurred image, 𝑚

s the number of channels of the HSI, 𝜆𝑖 is the wavelength at the i-th

hannel, 𝑋( 𝜆) , 𝑌 ( 𝜆) and 𝑍( 𝜆) are CIE 1931 color matching functions.

he same as with Eq. 14 : 
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here { 𝑃 𝑋 , 𝑃 𝑌 , 𝑃 𝑍 } is the XYZ representation of the clear image. 

The coordinates in the CIEXYZ color space are converted to the sRGB

olor space, and the color images are obtained after gamma correction.

or more details, please refer to the tutorial [44] . 

To quantitatively evaluate the performance of all methods, we cal-

ulate the peak signal-to-noise ratio (PSNR), structural similarity (SSIM)

45] , and spectral angle mapping (SAM) [46] of these methods in each

pectral channel respectively, and averaging along the channel as the

etrics. Higher PSNR and SSIM mean better performance, while a

maller SAM indicates a higher spectral precision. 

.2. Implementation details and reconstruction results 

We design our DOE from 400nm to 700nm. The DOE has a fo-

al length of 100mm, a diameter of 5mm, and a substrate thickness
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Fig. 5. The pipeline of generating diffraction blurred images and clear images. The input image is a 3D data cube from hyperspectral image dataset. Since the 3D 

data cube carries the effect of optical aberration, the PSFs of the clear image do not introduce any image degradation. ”⊗” denotes convolution. 

Fig. 6. The reconstruction results of our method. The hyperspectral images are represented as RGB color. The diffraction blurred images are generated by convolution 

of ground truth and spectrally-varying PSFs. The RMSE of the four selected points’ spectral curves are 0.005761, 0.005027, 0.005612 and 0.016279 respectively. 

6 
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Fig. 7. We compare the reconstruction results while only the diffraction blurred images (denoted as ”Blur ”), the clear images (denoted as ”Clear ”), and both are 

used (denoted as ”Fusion ”). The hyperspectral images are represented as RGB color and the spectral curves of the three methods at the points of interest are also 

shown in detail. 
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f 0.6mm. We adjust the number of wings to two to obtain a bal-

nced performance in both spatial resolution and spectral accuracy

47] . The DOE is discretized into 5000 ×5000, and the height differ-

nce Δℎ ( 𝑥, 𝑦 ) is discretized into eight steps to enable calculation and

abrication. 

We use the PyTorch framework to implement our network frame-

ork design. The model is optimized by using the stochastic gradient

ethod with the ADAM optimizer [48] . The mini-batch size is set to 16,

nd the weight decay is set to 0. The learning rate is initially set to be

0 −4 , and will be divided by two every 20 epochs. It took about 17 hours

o train the network using a workstation equipped with AMD EPYC 7543

nd NVIDIA RTX A6000. During the testing phase, it took about 10ms

o reconstruct a hyperspectral image with a scale of 2704 × 3376 × 31 . 
To verify the effectiveness of our method, we fed the blurred and

lear images into the two branches of the network, and the reconstruc-

ion results are displayed in Fig. 6 . Hyperspectral images are represented

s RGB color to facilitate observing spatial details and reconstruction

uality. It can be seen from Fig. 6 that the spatial details of blurred

mages with spectrally-varying PSFs can not be distinguished. The spa-

ial details and spectral precision of the hyperspectral images recon-

tructed by our method can be remarkably consistent with the ground

ruth. The root mean square error (RMSE) of these four spectral curves
 r  

7 
nd ground truth are 0.005761, 0.005027, 0.005612, and 0.016279,

espectively. 

.3. Compared with other methods 

To confirm that clear images contain more spatial details while

lurred images have latent spectral features, we compared the perfor-

ance of three methods: 

• Only blurred images are used for reconstruction. 
• Only clear images are used for reconstruction. 
• Both blurred and clear images are used for reconstruction. 

We adjust the network structure in the experiment with only one

mage as input, which means that only one of the two sub-networks is

etained in the feature extraction stage. The reconstruction results and

pectral curves of these three methods are shown in Fig. 7 respectively.

he RMSEs of the four spectral curves on the selected points are shown

n Table 1 . 

The spatial details depicted in Fig. 7 show that the spatial details of

he result reconstructed from the clear images are rich, which is near

o the resolution of the ground truth. However, there are numerous er-

or messages in the flat place, and the spectral curves of the selected



H. Xu, H. Hu, S. Chen et al. Optics and Lasers in Engineering 160 (2023) 107274 

Fig. 8. Visual quality comparison on three typical scenes in HSI datasets. The error maps of various fusion-based methods at 500 nm are displayed. From left to 

right correspond to the reconstruction results of TSFN/TFNet/ResTFNet/ours respectively. 

Table 1 

The RMSE of the four spectral curves on the se- 

lected points. 

1 2 3 4 

Blur 0.0032 0.0321 0.0065 0.0176 

Clear 0.1039 0.0664 0.0212 0.0919 

Fusion 0.0027 0.0110 0.0053 0.0078 
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[  
oint deviate significantly from the ground truth. On the other hand, the

esults reconstructed from the blurred images have a poor spatial res-

lution, and many details are indistinguishable. However, the spectral

urves are closer to the ground truth than the result reconstructed from

he clear images. Using both blurred and clear images for reconstruction

ombines the benefits of the other two methods and has the best spatial
Table 2 

Quantitative evaluation indexes of different methods. 

Dataset KAIST 

Method PSNR ↑ SSIM ↑ 

Clear →HSI HSCNN-R 31.5312 0.9339 

HSCNN-D 30.8985 0.9425 

our-clear 32.0981 0.9442 

Blur →HSI Jeon’s 32.3672 0.9352 

our-blur 37.3970 0.9704 

Fusion →HSI PNN 30.0369 0.8940 

TFNet 40.7239 0.9834 

ResTFNet 38.5182 0.9695 

TSFN 39.0797 0.9748 

ours 41.3280 0.9850 

8 
esolution and spectral precision performance. The quantitative perfor-

ance of these three methods on the two datasets is shown in Table 2 .

he method of using only clear images is denoted as ”ours-clear, ” the

ethod of using only blurred images is denoted as ”ours-blur, ” and the

ethod of using both blurred and clear images is denoted as ”ours. ”

Since the PSNR/SSIM/SAM of all channels are calculated and aver-

ged, the incorrect information of several spectral channels has a sig-

ificant detrimental impact on the metric calculation. This is also why

e think that, while the spatial resolution of the reconstruction results

rom clear images is better, the PSNR/SSIM/SAM is inferior. 

We compared our method with other state-of-the-art hyperspectral

mage reconstruction methods on KAIST and ICVL datasets. These meth-

ds are mainly divided into three categories. The first category is the

pectral super-resolution networks such as HSCNN-R [49] , HSCNN-D

49] and previously mentioned ”ours clear, ” which only use clear im-
ICVL 

SAM ↓ PSNR ↑ SSIM ↑ SAM ↓

0.1943 29.1905 0.9467 0.0373 

0.1964 27.7471 0.8977 0.0433 

0.1844 29.1490 0.9526 0.0382 

0.1764 32.2034 0.9099 0.0554 

0.1104 38.3968 0.9440 0.0370 

0.3320 32.6725 0.9326 0.0818 

0.0910 45.9293 0.9911 0.0251 

0.1257 42.1191 0.9847 0.0309 

0.1328 42.9550 0.9878 0.0342 

0.0817 47.4110 0.9932 0.0213 
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ges to reconstruct hyperspectral images. We implement HSCNN-R with

2 residual blocks (256 filters in each layer) and HSCNN-D with 12

ense blocks. The second category is to reconstruct hyperspectral im-

ges only by using blurred images. Specifically the optimization-based

nrolled network proposed by Jeon et al. [12] , and the previously men-

ioned ”ours blur. ” The third category is the methods that utilize clear

nd blurred images to reconstruct hyperspectral images simultaneously.

hese methods notably PNN [34] , TFNet [36] and TFNet’s modified net-

ork ResTFNet [36] , TSFN [50] , are mostly employed for pansharpen-

ng. 

Table 2 shows the quantitative evaluation performance of these re-

onstruction methods on the two datasets. From Table 2 , we can see that

he majority of the fusion methods outperform the traditional methods,

nd the fusion reconstruction method we proposed has achieved the best

erformance in terms of PSNR/SSIM/SAM. To assess the visual quality

f hyperspectral reconstruction, Fig. 8 shows the error maps of various

usion-based well-performed methods at 500 nm. The error maps illus-

rate that our method has less error than the baseline TFNet and has the

est performance compared with other state-of-the-art methods. 

. Conclusion 

In this paper, we proposed a joint hyperspectral imaging system of

lear and diffractive imaging branches. The imaging system captures

lear images with abundant spatial information and diffracted rotation

lurred images with latent spectral features simultaneously. Further-

ore, we proposed a hyperspectral image fusion and reconstruction

etwork with a two-branch input. Utilize the two images captured by

he joint imaging system as input; the proposed network effectively im-

roves the quality of the spectral images through feature extraction, fea-

ure fusion, and image reconstruction. The reconstruction method pro-

osed in this work outperforms other state-of-the-art methods in terms

f spatial resolution and spectral precision. 

In the following, we may further build a joint imaging system and

pply it in real-world imaging experiments. In addition, we will explore

ore feasible imaging systems that can simultaneously acquire diffrac-

ion blurred images and normal clear images in our subsequent work. 
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