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Abstract: In mobile photography applications, limited volume constraints the diversity of
optical design. In addition to the narrow space, the deviations introduced in mass production
cause random bias to the real camera. In consequence, these factors introduce spatially varying
aberration and stochastic degradation into the physical formation of an image. Many existing
methods obtain excellent performance on one specific device but are not able to quickly adapt to
mass production. To address this issue, we propose a frequency self-adaptive model to restore
realistic features of the latent image. The restoration is mainly performed in the Fourier domain
and two attention mechanisms are introduced to match the feature between Fourier and spatial
domain. Our method applies a lightweight network, without requiring modification when the
fields of view (FoV) changes. Considering the manufacturing deviations of a specific camera, we
first pre-train a simulation-based model, then finetune it with additional manufacturing error,
which greatly decreases the time and computational overhead consumption in implementation.
Extensive results verify the promising applications of our technique for being integrated with the
existing post-processing systems.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Due to the development of social media and the speedy transmission of information, mobile
photography along with user-friendly image signal processing (ISP) has become the most popular
way to capture images. However, a mobile device generally stacks 7 to 8 lenses in limited
physical space to correct optical aberrations. Moreover, injection molding technology is applied
in the manufacturing pipeline of cellphone cameras to cut costs and accelerate production. As
a consequence, cramped physical space limits the variety of optical prescription and injection
molding introduces more complex deviations, all of which increase the difficulty of tolerance
controlling, resulting in diverse image degradation among cellphones with identical lens designing
[1].

As discussed above, the degradation introduced by lens consists of intrinsic optical aberrations
and manufacturing errors as well as assembly biases, where the former characterize the differences
of a lens to focus light across FoVs and the latter comes from the optical component defects
introduced in production. Classically, the aberrations are corrected in optical designing and the
system variations are compensated by tolerance analysis, but their solutions are very limited by
simulation accuracy, structure complexity, and manufacturing capability. Moreover, eliminating
optical aberrations completely through a chunky lens stack is still challenging. Therefore, many
scholars have taken insight into computational optics to correct the lens degradation by post-
processing, and some prior researches indicate that the computational method is quite efficient
to alleviate residual aberrations [2–4]. However, owing to the randomicity in manufacturing
procedures, the optical system produced on the same pipeline can also deviate from each other.
Therefore, generalizing all the optical devices of the same prescription with a concrete model is
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neither accurate nor robust, where more investigation should be invested into the manufacturing
deviations.

When the aforesaid real lens degradation is abstracted into a theoretical model, point spread
functions (PSFs) are widely used to characterize it. PSF is described as the impulse response of
a focused optical system and is widely applied in system evaluation and imaging synthesis. In
mathematics, image degradation can be expressed as the convolution of the clean image Iclear(x, y)
and the spatially variant kernels k(x, y), which can be formulated as follows:

Ideg(x, y) =
∬

D
Iclear(x, y) ⊗ k(x, y)dxdy + n(x, y), (1)

where ⊗ is the convolution operation. Ideg(x, y) is the measured image, and n(x, y) is the noise
introduced in image formation. x and y indicate the pixel position along the two-dimension. The
reconstruction of Iclear(x, y) is the popular issue where considerable efforts have been invested
in it. Recovery methods comprise non-blind and blind deconvolution as well as learning-based
method. For the non-blind method, PSF can be obtained through ray tracing or computational
approximation [5–7], then utilize PSF as one of the inputs in subsequent deconvolution. Due
to the presence of noise, deconvolution is an ill-posed problem and must rely on empirical
image priors, where the relationship between fidelity items and image priors requires manual
fine-tuning for different conditions. As for blind method [2,8], a large body of work in these
fields is performed through alternately optimizing the PSF and the latent image. Nevertheless,
due to the PSFs being spatial-variant of a wide range over regions, high computational overhead
prevents these methods from implementation in real-time imaging. Over the past decades, the
methods based on deep learning outperform traditional deconvolution. Its accuracy exceedingly
depends on the data pairs, where target datasets of a specific camera are required for better
reconstruction. Moreover, a single network needs a larger model capacity to handle the spatially
varying degradation.

In this work, we propose a plug-and-play method to correct the degradation of diverse cameras,
including optical aberrations, manufacturing errors, and assembly biases. Drawing from the
deconvolution of removing non-uniform blur by combining single PSF restoration linearly, we
develop a deep-learning method, whose linear weights are realized via attention mechanism. To
be more specific, we introduce the linear combination of Wiener filter [9] in the feature domain
and propose an effective PSF calibration method to support the feature-based deconvolution,
bridging the gap between the optical degradation and learning-based model. Moreover, since
predicting the signal-to-noise ratio (SNR) of Wiener filtering from the complex real scene is
arduous and inaccurate estimation will introduce ringing artifacts, we engage the frequency
domain feature with the basic functions to construct SNR, denoted as a frequency-related map.
To achieve plug-and-play, we propose to pre-train a base model with intrinsic optical aberrations
and then finetune it with measured overall degradation, which conveniently adapts to the target
real camera and results in significantly improved visual quality. The contributions of our work
are as follows:

• A frequency self-adaptive block (FSB) is proposed for performing feature-based Wiener
deconvolution and its linear combination is applied to correct non-uniform blur.

• We design a plug-and-play postprocessing pipeline, which is pre-trained with intrinsic
optical aberrations and fine-tuned with overall degradation of the target real camera,
realizing a fast adaption to manufacturing deviation and significantly improved quality.

2. Related work

PSF Estimation Image restoration algorithm is divided into non-blind and blind methods, the
former requires PSF estimation of which accuracy is closely related to the measured image.
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A direct method to obtain PSF is calibration, such as obtaining the impulse response of the
sensor through an array pinhole and then eliminating the noise in the measured PSF. However,
the calibration requires a lot of time consumption and specific devices. Now many research
generally uses a single checkerboard or noise image to estimate PSF, including the iterative and
learning methods. The former method involves optimization problems and is suitable for spatially
invariant blur kernels. The previous work [1] minimized the L2 norm between the simulated and
measured PSF by adjusting lens prescription. In [10], a PSF estimation approach was introduced,
where the frequency spectrum of the target image is taken into account. This method benefits
from a homogeneous spectrum density function (SDF) of Bernoulli noise patterns to introduce a
SDF constraint. However, the optimization process is cumbersome and even can not converge,
especially for low signal-to-noise ratio observation [10,11]. The learning method can make up
for that deconvolution is not effective for estimation. The fully unsupervised internal-GAN was
proposed by using a linear generator in down-sampling PSF estimation [12]. But in some real
situations, it is unstable and requires strong constraints added to evaluate more reliable kernels.

Aberration Correction Due to aberration is spatial-variant, a straightforward way is to
convert the non-uniform blur into several uniform ones. The work [13] introduced the optical
symmetry to radially split FOV and warp technique. In deconvolution, they propose sharp-to-blur
strategy to improve restoration performance, but this method may fail in severe nonlinear camera
response. Unlike [13] and [4] split image along the radius, the other method is splitting the
image into rectangular patches. In [14], authors used rectangular patches for spatial-invariant
deconvolution, then apply projection network to suppress ringing and blocking artifacts. In
non-blind deconvolution, improper PSF estimation may cause artifacts. To solve it, the work in
[15] introduced to generate Gabor filters for each deblurred image, with regards to PSF frequency
information, then the response is used as an additional regularization scheme.

Optimization-Deconvolution based Restoration Since image deconvolution is an ill-posed
problem, adding priors are essential to improve the performance of restored images. The pioneers
of deconvolution are the Wiener filter [9] and Richardson-Lucy algorithm [16]. They assumpted
that natural images satisfy Gaussian and Poisson distribution, respectively. Nowadays, a more
general prior is hyper-Laplacian which is consistent with heavy-tailed distribution. Thus, many
scholars have been exploring more accurate methods for estimating it. A Bayesian minimum
mean squared error estimates (MMSE) was adopted to explore favorable high-order priors [17].
Cho, Wang and Lee employed expectation-maximization (EM) method to remove saturation
regions under the assumption that blur kernel is spatially invariant [18]. The Gaussian mixture
model (GMM) was also used as a prior to fit the heavy-tailed distribution of natural image
gradient [19], where Zoran and Weiss proposed a patch-wise prior based on it [20]. Roth and
Black used a Products-of-Experts framework to model the PSF characteristic and any Bayesian
inference that requires image priors can use this model [21]. But these methods need complex
optimization and is usually time-consuming.

Deep-learning based Restoration In addition to traditional methods, deep learning is also
applied for image restoration. In paper [22], the deconvolution convolutional neural network
(CNN) was described with separable 1D kernels to reconstruct image. However, the network
requires to finetune with different inverse kernels initialization. The scholars of [23] provided a
convolutional submodel to learn denoised image gradients as image priors. The method resolves
deblurring into two subproblems, requiring two training processes: denoising and deconvolution,
which fits the physical models but is difficult to apply in real-time imaging. Kruse, Rother
and Schmidt proposed an extension of iterative Fourier deconvolution, by introducing CNNs
to provide more useful regularization and using a simpler boundary adjustment method [24].
A multi-scale blind deconvolution was proposed in [25], whose each scale contains feature
extraction, kernel estimation and image estimation modules. But this work is poor-performed in
larger PSF and only handles uniform kernels.
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Most of the above methods focus on solving spatially uniform PSFs. As for non-uniform
blur, they might require to finetune for every PSFs, which requires extensive computational
overhead. Challenges in optical degradation correction lie in the trade-off between computational
consumption and performance. Based on the similarity of PSFs in the neighborhood, we combine
traditional Wiener filter and CNNs for restoration, aiming to output high-quality images without
relying on an enormous network.

3. Overview

Our objective is to correct the optical degradation introduced in the designing and manufacturing
process of the lens. To achieve this, we engage the post-processing chain with the random
degradation caused by an optical system. The two core steps of the proposed method are as
follows: first, we apply an effective PSF calibration method and use the blur kernel to bridge the
mismatch between the optical system with the post-processing pipeline. Second, to eliminate
the stochastic aberration, we design CNN-based post-processing to self-adaptively perform the
mapping between the degraded data and the latent RGB image.

Different from the blur that is uniform across the entire FoV, optical degradation is spatially
variant due to the FoV-related optical aberration and the random manufacturing deviation.
Fortunately, the natural signal is spatially continuous, so the degradation is similar in some
neighborhoods of the image. Assuming the blur and the noise level are the same in one patch
Idegraded(x, y), the model of its degradation can be formulated as:

Idegraded(x, y) = Ilatent(x, y) ⊗ k(x, y) + n(x, y) (2)

here the Ilatent(x, y) is the latent image of the patch Idegraded(x, y). ⊗ is the operation of convolution.
k(x, y) is the PSF that indicates the energy diffusion caused by optical degradation. n(x, y)
is the stochastic noise introduced during image acquisition. A typical method to retrieve the
latent image Ilatent(x, y) is deconvolution, where a Wiener filter is the most classic approach. By
introducing Tikhonov regularization, the wiener deconvolution attempts to restore the latent
image from the noisy degraded data. This process is as follows:

Ilatent(x, y) = F −1(
F (k(x, y))

|F (k(x, y))|2 + 1/SNR
· F (Idegraded(x, y))) (3)

where F denotes the discrete Fourier transform. (·) is the conjugate operation. SNR is the
signal-to-noise ratio of the patch, it varies with spatial frequency. However, the statistical
properties (PSF of different FoV and SNR of different frequencies) are difficult to measure when
only a degraded patch is given. Therefore, we separate the solution into PSF calibration and
self-adaptive correction. The PSF calibration aims to predetermine the PSF of optical degradation
(illustrated in Sec. 4.1) and the self-adaptive correction is designed for addressing the problem of
statistical properties in different frequencies (detailed in Sec. 4.2).

4. Method

4.1. PSF calibration

Supposing the degradation of the natural image is similar in some neighborhoods, we crop a
patch Idegraded(x, y) from the checkers taken by a specific camera. Then, the patch Idegraded(x, y) is
transformed into the latent image Ilatent(x, y) by the same method as [26]. In this way, we obtain
the data pairs {Ilatent(x, y), Idegraded(x, y)} for PSF calibration. Furthermore, the normalized FoV
(calculated by (x, y)) is prepared for accurate PSF calibration in the energy domain.

In PSF calibration, we adopt the deep linear model to transfer the optical degradation from
Idegraded(x, y) to Ilatent(x, y) [26]. To be more specific, the deep linear model is feed with the perfect
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image Ilatent(x, y), and the output Id
latent(x, y) is supervised by the degraded patch Idegraded(x, y).

Therefore, the deep linear model represents the mapping from the perfect scene to the degraded
image received on the sensor. Moreover, the deep linear model is also supervised with the PSF
characteristics it represents. In one training step, a two-dimensional impulse function is feed into
the model besides the Ilatent(x, y), and the output PSF k(i, j) is supervised by two loss functions to
ensure the sum of PSF equals to 1 and penalize the singular values in the edge. The overall loss
function of the deep linear model is expressed as follows:

L = α | |Id
latent − Idegraded | |1 + β |1 −

∑︂
i,j

k(i, j)| + γ
∑︂
i,j

|k(i, j) · m(i, j)| (4)

here α, β, γ are the trade-off parameters of different loss functions. The first loss is to supervise
the output pixel-by-pixel, aiming to ensure the fidelity of the model. The second and the third
loss are used to constrain the characteristics of the PSF generated by the model, where (i, j) is the
coordinates of the PSF and m(i, j) is a 2D Gaussian mask. We note that the m(i, j) in [26] is a
constant matrix, whose weights exponentially grow with distance from the center of k. However,
due to the off-axis aberrations, the PSF spreads differently in tangential and sagittal directions.
Therefore, we apply the heteroscedastic Gaussian mask to constrain the asymmetric diffusion.
With knowing the geometric spot radius in tangential rtan and sagittal rsag of this FoV, the mask
is first formulated as follows:

m(i, j) =
1

2πσ1σ2
exp[−

1
2
(

i2

σ2
1
−

2ij
σ1σ2

+
j2

σ2
2
)],
σ2
σ1
=

rtan

rsag
(5)

where σ1 and σ2 are the variances of the distribution. σ1 is the same as [26] and σ2 is calculated
by the ratio of geometric spot radius. Then we rotate the mask according to the angle of this FoV
(as shown in Fig. 1) and use m(i, j) to penalize the singular values at the edge. After training the
deep linear model of all (x, y), the PSFs of different FoVs are the output of each model when
inputs the impulse function. In this way, we predetermine the PSF k by calibration, where the k
covers all the optical degradation in image formation.

Idegraded
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coloring

Stage : Degradation Transfer
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Fig. 1. PSF calibration is devided into input processing (Stage I) and degradation transfer
(Stage II). In Stage I, the latent checker is generated by the degraded measurement. In Stage
II, the latent image together with the impulse function are feed into deep linear model, and
the output is supervised by fidelity loss and kernel-related constraints.

4.2. Self-adaptive reconstruction

As mentioned in Section, the statistical properties of input are difficult to measure when only
degraded data is given. So for the spatial-variant degradation, the latent image is generally



Research Article Vol. 30, No. 13 / 20 Jun 2022 / Optics Express 23490

modeled as the linear combination of a series of deconvolutional results [27]. When the PSFs ki
of the entire field are given, the reconstruction of a latent image can be formulated as follows:

Ilatent(x, y) =
∑︂

i
F −1(ηi ·

F (ki)

|F (ki)|2 + 1/SNR
· F (Idegraded(x, y))) (6)

where ηi is the weight of ki at different (x, y). Traditionally, the 1/SNR is usually fixed or
calculated by Gaussian distribution. However, the real distributions of signal and noise are more
sophisticated, e.g., the shading introduced by the optical system will let the signal received by the
center of the sensor stronger than the edge, so the shot noise and read-out noise dominate at the
center and edges, respectively.

Due to the complexity of the noise statistical properties, we explore using the deep learning
method to predict 1/SNR according to the input data. For convenience, a fast Fourier transform
(FFT) map ϵ(u, v) is used to describe the 1/SNR at different spatial frequencies, where (u, v)
indicates the coordinates of spatial frequency. The advantage of this representation is that it can
self-adaptively suppress or enhance the intensity of different spatial frequencies in the Fourier
domain. We express the ϵ(u, v) as a linear combination of basic functions to represent the 1/SNR
at different spatial frequencies:

ϵ(u, v) =
∑︂

j
ϕj · |F (pj)|

2 (7)

here pj denotes the gaussian basic functions set consisting of the gaussian kernels of different
standard deviations. ϕj is the weight of different basic functions. Therefore, when the PSFs are
given and the linear representation of 1/SNR can be predicted, the accurate reconstruction for
spatially-variant degradation can be obtained as follows:

Ilatent(x, y) =
m∑︂
i
F −1(ηi ·

F (ki)

|F (ki)|2 +
∑︁n

j ϕij · |F (pj)|2
· F (Idegraded(x, y))) (8)

In this way, we realize a self-adaptive reconstruction of non-uniform degradation. When
implement in the deep-learning method, a frequency self-adaptive block (FSB) is developed for
performing deconvolution in the Fourier domain. We feed the FSB with the image feature and a
set of calibrated PSFs and output the image feature after reconstruction. As shown in Fig. 2, the
proposed FSB is composed of two main parts: PSF-combining deconvolution and Frequency
self-Adaptive modification (framed by red dotted lines). In the first part, the input PSFs ki are
engaged with the image feature as the form of Eq. (8) and the weight ηi of ki is obtained by
performing spatial attention and channel attention on the input image feature g:

{η} = SpatialAttention(g) · ChannelAttention(g), (9)

And in the second part, the weight map ϕj of different basic functions are predicted by the FFT
map of the image feature, which can be formulated as follows:

ϕ = SoftMax((Conv(AvgPool(F (g)))), (10)

where AvgPool, Conv, SoftMax denotes average pooling, convolution and softmax function. After
calculating the weight of PSF and basic functions, the reconstruction feature can be obtained by
Eq. (8). Therefore, with the predetermined PSFs (details in Sec. 4.1), the FSB reconstructs the
degraded feature in the Fourier domain, suppressing or enhancing the feature self-adaptively.
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Fig. 2. Optical Degradation Correction Model aims to perform frequency self-adaptive
restoration on the input data. It engage with the predetermined PSFs to deconvolution and
predict the targeted 1/SNR map.

4.3. Details in network

In this subsection, we illustrate some details of the network. As shown in Fig. 2, the network
structure is based on U-Net with skip connection and ResBlock is applied for more sophisticated
expression. The network model includes an encoder and decoder with four scales for feature and
image domain transferring. FSB is located at the bottom of the model framed by a blue dotted
line, which is the key element of reconstructing a degraded image. Since the spatially variant
PSFs are highly correlated with the FoV of the input image, we adopt the FoV attention module
as [26] to let the model perceive the spatial information. In the following, two attention modules
in PSF-combining deconvolution and loss function are illustrated. Moreover, for a non-blind
reconstruction, containing all the predetermined PSFs (150*200 across the whole FoV) as inputs
are redundant, we design a strategy for PSFs reduction.

Channel attention. Due to the concatenation of multiple PSFs restoration, it is worth
exploiting the inter-channel relationship of features. Different PSFs deconvolution tends to
recover different frequency information. Specifically, small size PSF deconvolution results
seem to be smoother, but large size PSF deconvolution results generate more high-frequency
components. Thus we design a channel attention module to fuse information of different
frequencies. Like [28], global average pooling is presented to squeeze spatial information, then
forward to double convolution layers. ReLU and sigmoid function are activate-functions in the
middle layer and output layer, details in the left of Fig. 3.

.
Element-wise product
Sigmoid function

.

Global Pooling

Conv

LReLUChannel Attention

.
Spatial Attention

Dilated Conv

Fig. 3. Channel Attention and Spatial Attention.

Spatial attention. Spatial attention is complementary to channel attention. In spatial
dimension, textures are diverse with coordinates changing, thus spatial attention is introduced to
update a proper value in the position. Following the works proposed by [29], spatial attention
module stacks a set of dilated convolution layers, particulars in the Fig. 3. Compare with
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the conventional convolution layer, it broadens the receptive field without introducing more
parameters.

Loss function. We employ the mean absolute error (MSE) as the fidelity loss and add
perceptual loss to induce more high-frequency details.

Ltotal = λmseLmse + λperLper, (11)

Where λmse and λper are set as 0.1 and 1 empirically.
Predetermine PSFs. (1) PSFs reduction strategy. Considering that aberrations are locally

highly correlated, both size and shape of them are similar. Therefore, inputting all PSFs is not
only generates huge redundancy but also may cause overfitting in subsequent restoration. We
design a mask to sample them, retaining more PSFs in the edge and fewer PSFs in the center.
Together with the symmetry of the optical system, upper-left/lower-left/upper-right/lower-right
degradation is quite similar, so a quarter of PSFs almost represents all FoV degradation. Due
to the randomness of the selection, the attention mechanism parameters intend to capture more
helpful issues in PSFs combination. Furthermore, this strategy also generates a stabler model,
which facilitates faster adaptation to new PSFs in subsequent fine-tuning. (2) In order that PSFs
and images are at the same scale, PSFs are downsampled four times to realize scale matching.

5. Experiments

5.1. Analysis

We adopt DIV2K [30] dataset which contains 800 images of 2K resolution for evaluation. It is
divided into the training set, validation set and test set at 3:1:1 for processing. The procedure we
construct image pairs is as follows. First, we calculate 30000 PSFs (we have divided the whole
FoV into 150*200, then calculated the PSF by FoV) by Sec. 4.1 for HUAWEI HONOR 20 pro.
Then, clean images are convoluted with the obtained PSFs and add 1% and 2% Gaussian noise to
generate data pairs.

In network training, the data is cropped by the patch size of 200*200 and the batch size set
to 16 for each iteration. We use the Adam optimizer with an initial learning rate of 10−4. The
training procedure is terminated after iterating 100 epochs in total and we decrease the learning
rate by half after every 10 epochs. We use PyTorch implementation on a single NVIDIA GTX
1080 Ti GPU. In training process, when the batch size sets 16, the corresponding memory is
about 5G. By eliminating similar PSFs with the strategy proposed in Sec. 4.3, the number of
input PSFs for recovery decreases from 30000 to 375.

In Sec. 5.2, we employ simulation data to calculate objective evaluation value, which highlights
the superiority of our method with other reconstruction methods. Experiments are carried out for
spatially variant PSFs and spatially invariant PSFs. In Sec. 5.3, we ablate some modules in the
original network to demonstrate their necessity. In Sec. 5.4, 5 mobile phones data are utilized to
valid the finetune trick, and Sec. 5.5, we compare our method with HUAWEI ISP.

5.2. Qualitative evaluation

Our method is compared with some advanced deblurring algorithms, including DeblurGANv2
[31], DPDNN [32], DWDN [33], SRN [34]. The PSNR, SSIM, and LPIPS [23] value of these
methods are listed in Table 1 and Table 2. The PSNR, SSIM and LPIPS are averaged over the
whole FoV. DWDN is a non-blind restoration algorithm and others are blind recovery.

We evaluate the effects of uniform and non-uniform blur separately, all methods using the
same dataset. For the uniform blur, we randomly pick PSF from the PSF set (the PSF set contains
various PSFs calibrated in Sec. 4.1 ), then convolve sharp images to build uniform-blur image
pairs. For the non-uniform blur, we calculate PSFs of a mobile phone through Sec. 4.1 methods,
then the clear image is degraded by these PSFs (150*200) in different FOV.
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Table 1. Comparison with advanced methods, PSF is spatial-invariant.

Method PSNR ↑ SSIM ↑ LPIPS ↓ time(s)

Input 29.12 0.9111 0.1671

SRN 28.1 (59.4 %) 0.9133 (5.4%) 0.1486 (32.6%) 3.0145

DPDNN 31.59 (16.0%) 0.9381 (2.0%) 0.1126 (2.8%) 6.0183

DWDN 32.75 (5.1%) 0.9574 (0.8%) 0.1552 (38.4%) 12.8729

DeblurGANv2 31.5 (16.9%) 0.9226 (4.4%) 0.1586 (41.5%) 1.2412

Ours 33.36 (0.0%) 0.9650 (0%) 0.1104 (0.0%) 1.0543

Table 2. Comparison with advanced methods, PSF is spatial-variant.

Method PSNR ↑ SSIM ↑ LPIPS ↓ time(s)

Input 27.57 0.8970 0.1849

SRN 28.40 (76.0%) 0.9151 (5.8%) 0.1595 (115.2%) 3.2490

DPDNN 31.35 (34.4%) 0.9562 (1.6%) 0.1092 (47.3%) 6.6355

DeblurGANv2 28.09 (81.2%) 0.8509 (12.4%) 0.2654 (258.0%) 1.2446

Ours 34.97 (0%) 0.9720 (0%) 0.0741 (0%) 1.0945

Table 3. Performance of the proposed model and its ablation study on
synthetic data.

Method PSNR ↑ SSIM ↑ LPIPS ↓

Input 27.71 0.9031 0.1685

whole Network 35.89 (0.0%) 0.9786 (0.0%) 0.0741 (0.0%)

Corresponding PSFs 35.34 (4.3%) 0.9620 (1.7%) 0.0880 (18.7%)

FoV Encoder 34.55 (10.9%) 0.9734 (0.5%) 0.0872 (17.7%)

PSF DownSampling 33.29 (22.7%) 0.9754 (0.3%) 0.0871 (17.5%)

Adaptive ϵ 35.78 (0.8%) 0.9775 (0.1%) 0.0842 (13.6%)

2 FSBs 35.84 (0.4%) 0.9760 (0.3%) 0.0864 (16.6%)

Table 1 shows results with spatial-invariant degradation, our method is better than three blind
methods. DeblurGANv2 has a sharper edge but emerges color spots in some areas which affect
the overall appearance. In indices, our method is better than the non-blind method DWDN and
less time consuming. Additionally, DWDN is relatively smoother compared with other methods,
as shown in Fig. 4.

input label SRN DPDNN DWDN DeblurGANv2 Ours

Fig. 4. Spatial-invariant PSFs aberration correction results with 1% additive noise.

For spatial-variant PSFs, more severe degradation occurs when FoV gets large, hence image
reconstruction in the edge of the image is tougher. SRN, DeblurGANv2, and DPDNN handle
degraded images globally, which lead to compromised restoration and bring unoptimized texture
on the edge. Benefitting from the FoV encoder and spatial attention module, our method
efficiently engages the spatial information and achieves better performance. Especially on the
marginal FoV, the superiority of our method is more obvious as shown in Fig. 5.
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Input GroundTruth SRN DPDNN DeblurGANv2 OursDegraded image

Fig. 5. Spatial-variant PSFs aberration correction results with 1% additive noise.

5.3. Ablation

A comprehensive ablation study is performed to verify that every step in our method is necessary,
as shown in Table 3. The dataset of ablation study is degenerated by Gaussian kernels.

Corresponding PSFs: The corresponding PSFs input is conducive to image restoration. The
corresponding PSFs of the dataset are asymmetric and we utilize symmetric Gaussian kernels as
mismatch input PSFs to validate the work of PSF calibration. FoV encoder: PSF is related to
the FoV, therefore the coordinates of the pixel are encoded/removed in the input information.
PSF downsampling: PSF downsampling matches the scale of the image in the network and we
input the PSF in the original scale for ablation. Adaptive ϵ : To valid Eq. (7), we set ϵ a constant:
0.05 in ablation experiment. 2 FSBs: To prove the sufficiency of a single FSB, we adapt FSB
respectively to the last two scales for processing feature in ablation.

Frequency domain adaptive filter: We validate the basis function fitting data. For a patch,
the range of the maximum of ϵ : 0.3∼0.5, the range of the minimum: −0.07∼−0.04, and the
average range is 0.01∼0.06. Typical ϵ value in traditional Wiener filter is 0.01, 0.1, etc. Therefore,
the ϵ estimated by linear fitting is within a reasonable interval of empirical values. Basic function
fitting is feasible and can predict ϵ for different frequencies pertinently.

5.4. Finetune in 5 mobile phones

Image degradation is mainly composed of two aspects: intrinsic optical aberrations and
manufacturing error. Even with the identical optical design, the existence of manufacturing error
will cause the cameras’ PSFs a bit different from each other. If every mobile phone trains the
specific model with its own data, it costs too much time and computational overhead. Therefore,
we propose to pre-train the base model with optical design degradation, then finetune it with the
dataset designed for a specific phone.

Our experiment device is the HUAWEI HONOR20 pro. The configurations of the experiment
are illustrated as follows: (a) With the simulation PSFs (only optical design aberration included)
to build the dataset for pre-training, and then apply calibrated PSFs (optical design aberration plus
manufacturing error) to build the dataset for finetuning. (b) The whole process is trained with the
calibration PSFs dataset. Comparing (a) and (b) results in Fig. 6, both objective evaluation and
subjective perception of human eyes is not significant. (a) training epochs are less than 25 and
(b) training epochs are about 60. Experiments show the finetune method is feasible with fewer
iterations.

Moreover, to show the generalization of finetuning processing, we conducted experiments on
5 mobile phones as shown in Table 4. In Table 4, the calculation of PSNR, SSIM, LPIPS is
calculated on the simulation dataset. The degradation of simulation dataset is generated by 5
mobile phones PSFs, which are calculated by Sec. 4.1, respectively. Experiments (a) and (b) are
recorded as Dire and Finetune and the numbers in the first row indicate the indices of mobile
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Input

The PSNR, SSIM and LPIPS are averaged over the whole FoV.

(a) Dire (b)Finetune
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Restored image

Fig. 6. Direct training results compared with finetune results. Test image is real captured
image.

phones in Table 4. Therefore, finetuning with a shorter time can achieve closer to or even better
results than direct training on a large-scale dataset designed for a specific camera.

Table 4. Finetune evaluations of simulated images on 5 mobile
phones.

Evaluation Experiment 1 2 3 4 5

PSNR
Dire 31.21 31.28 30.58 30.94 31.09

Finetune 31.22 31.45 30.72 31.15 31.32

SSIM
Dire 0.9369 0.9249 0.9143 0.9207 0.9226

Finetune 0.9372 0.9262 0.9152 0.9227 0.9249

LPIPS
Dire 0.1888 0.2144 0.2368 0.2211 0.2184

Finetune 0.1918 0.2156 0.2378 0.2225 0.2187

Besides, to show the performance of our method in real images, we add the evaluation of
no-reference metric NIQE on real photographs, as show in Table 5.

Table 5. NIQE metrics of real image test results of 5
mobile phones.

NIQE 1 2 3 4 5

input 5.2590 6.2921 6.3884 6.3241 6.1219

output 4.9036 5.4365 5.1196 5.1788 4.8939

5.5. Application

The goal of our correction is to replace the existing ISP post-processing pipeline and achieve the
ultimate image quality improvement. Therefore, we compare our restoration with HUAWEI ISP
image. To show the robustness of the proposed algorithm when applied on mobile phone, we
evaluate the performance on 5 manufacturing samples. Due to space constraints, the recovery
of 2 mobile phones are shown in Fig. 7. Owing to the stochastic deviation introduced in
manufacturing, one can see that the degraded images of each samples are different from each
other. Because the output of ISP is JPEG format, we post-process our results with JPEG
compression for fair evaluation. In the center of outcome, our restorations are comparable to the
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built-in performance because Huawei ISP includes additional sharpening. However, as the FoV
increase, the advantages of our algorithm show up. Especially in the edge, the textures of our
restorations are more realistic and free from artifacts. In addition to the ability for correcting
spatially varying degradation, the proposed method also performs adaptive adjustment for each
processing samples. When comparing the outcomes on Camera2 and Camera3, we note that the
Huawei ISP performs the same processing on sensor measurements, ignoring the manufacturing
bias between each samples. On the contrary, the proposed method engages with the predetermined
optical degradation to carry out a self-adaptive processing in frequency domain, resulting in
better adjustment for different camera.

 Image captured by HUAWEI HONOR 20pro Degraded  HUAWEI ISP OursDegraded  HUAWEI ISP Ours

Camera 2 Camera 3

Fig. 7. Our restoration pipeline is compared with the built-in HUAWEI ISP. See Sec. 5.5
for details. Test image is real captured image.

To better quantify the image quality enhancement of the proposed method for different mobile
camera samples, we measure the 0.3 FoV spatial frequency response (SFR) on checkerboards for
comparing. As shown in Fig. 8, different cameras have various degradation because of deviations,
but they are enhanced to the proximate image quality after restoration. Moreover, owing to
the proposed fine-tuning tactics, our method has the potential to realize fast adaptation to each
mobile cameras in mass production. As illustrated in Sec. 5.4, our training strategy achieve better
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Fig. 8. SFR (MTF) enhancement of different manufacturing samples. "Real", "Enhance"
are MTF measured from the degraded checkerboards and the restorations, respectively.
"Diff.Limit" is the diffraction limitation of lens prescription.
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quantitative indicators with only 40% time consuming, which makes it possible for performing
targeted restoration on each mobile camera in mass production.

6. Conclusion

In this paper, a frequency self-adaptive block for non-blind image restoration was proposed.
We add the attention mechanism module and the FoV module to extract spatial information
and deal with non-uniform optical degradation. The FSB module combined traditional filters
with learning mechanisms to restore features in the frequency domain, generating ringing-free
and high-frequency details across the whole FoV of the camera. Experiments verified that our
method is more efficient and superior to the advanced methods in solving optical degradation.
Moreover, it could be quickly fine-tuned for manufacturing deviations, mitigating the difficulty in
deployment on mass production. Compared with HUAWEI ISP, the proposed method is capable
to replace existing ISPs to achieve image quality enhancement. Benefiting from our finetune
strategy, we hope to implement the proposed method in real mobile devices to realize targeted
and robust image reconstruction in the future.
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