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Abstract: Hyperspectral imaging attempts to determine distinctive information in spatial and
spectral domain of a target. Over the past few years, hyperspectral imaging systems have
developed towards lighter and faster. In phase-coded hyperspectral imaging systems, a better
coding aperture design can improve the spectral accuracy relatively. Using wave optics, we
post an equalization designed phase-coded aperture to achieve desired equalization point spread
functions (PSFs) which provides richer features for subsequent image reconstruction. During the
reconstruction of images, our raised hyperspectral reconstruction network, CAFormer, achieves
better results than the state-of-the-art networks with less computation by substituting self-attention
with channel-attention. Our work revolves around the equalization design of the phase-coded
aperture and optimizes the imaging process from three aspects: hardware design, reconstruction
algorithm, and PSF calibration. Our work is putting snapshot compact hyperspectral technology
closer to a practical application.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Hyperspectral imaging (HSI) technology is an imaging method based on several narrow spectral
bands. Combining imaging technology with hyperspectral technology [1] allows detection of
two-dimensional image information and one-dimensional spectral information of the target with
high spectral resolution. Given this characteristic, HSI is gaining widespread use in biology [2,3],
medicine [4,5], food detection [6,7], remote sensing [8,9] and other fields.

Traditional hyperspectral imaging solutions generate images by scanning in a single spectral
dimension or a single spatial dimension [10]. This staring imaging method takes great time
costs, precluding dynamic scenes or video capture. To address this, researchers have developed
snapshot compressive imaging systems (SCI) to obtain HSI cubes. An excellent example is the
coded aperture snapshot spectral imaging (CASSI) system [11,12]. However, it suffers from
large system volume and weight due to the complex structure involving dispersion elements.
Consequently, there are attempts to reconstruct spectral information from RGB images captured
by ordinary cameras directly [13–15], which maybe not accurate enough.

To solve the above issues, more and more research has been devoted into compact snapshot
hyperspectral imaging systems [16,17]. Jeon et al. [17] designed a specific diffractive optical
element (DOE) to generate spectrally-varying point-spread-functions (PSFs). They realized
hyperspectral imaging by adding a novel DOE in front of an exposed sensor. PSFs rotate in a
variety of directions to encode the target’s reflectance at different wavelengths. And finally, the
reconstruction algorithm reconstructs the three-dimensional (3D) HSI cube from the detected
encoded two-dimensional (2D) image. Furthermore, to enhance the sufficiency of information
coding, Arguello et al. [18] introduced an optimized design of color-coded aperture (CCA) based
on DOE imaging. In recent years, an end-to-end experimental method [19–23] has been proposed
in the field of computational imaging. The DOE element and reconstruction algorithm are
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simultaneously optimized by deep learning, and the best reconstruction performance is achieved
for a specific scene.

Using designed diffractive elements for hyperspectral imaging is an excellent solution. Com-
pared to traditional scanning spectrometers and CASSI hyperspectral systems with complex
imaging optical paths, this compact imaging system is more versatile and portable. In addition,
there are other solutions for a compact hyperspectral imaging system. The compact system based
on wavelength coding [16,24,25] achieves hyperspectral imaging by plating filters of different
wavelengths on the pixels. However, the imaging channels of this system are limited, since more
imaging channels mean lower spatial resolution. The compact imaging system based on diffusers
[16,26] encodes with off-the-shelf and non-designed phase encoder, which often leads to large
PSFs, which makes the spatial resolution of the reconstructed image unable to be guaranteed.
Designed DOE-based imaging system is free of the above shortcomings.

The study of hyperspectral reconstruction algorithms is also an important aspect of hyperspectral
imaging. In general, the traditional iterative approach used by Jeon et al. [17] has the disadvantage
of being time-consuming and having limited effectiveness in restoring complexly degraded images.
The reconstruction algorithm based on convolutional neural network, which has developed apace
in recent years, can achieve better recovery effect. Cai et al. [27,28] introduced transformer
structures into hyperspectral reconstruction. Transformer [29–32] is a multiplication-based neural
network with a unique overall structure, which is mainly composed of the self-attention module.
Even though it may yield better results than convolutional neural network, the computational
complexity is much greater. According to Yu [33], the excellent ability of transformer to perform
visual tasks may not be due to complex self-attention operations, but rather to its overall structure.
The results are also confirmed in a later work [34], although its consideration is different from
Yu’s [33]. Based on this consideration, we propose a CAFormer network structure that can
reduce the computational burden by replacing self-attention with channel-attention. It achieves
better results than the existing state-of-the-art neural network with lower computational load and
less computing time.

Our work is an incremental improvement on Jeon’s [17]. There are some areas in Jeon’s work
that could be improved, including the DOE design and the reconstruction algorithm. Hu [35] has
made some improvements to the design of DOE in this system, changing the three-lobed PSFs
into two-lobed ones to enhance imaging quality [36]. On the basis of previous works, we further
improved the imaging effect, summarized and implemented the imaging process as shown in
Fig. 1, and made the following contributions:

• We propose an equalization design of phase-coded aperture making PSFs at different
wavelengths approximately equal in size, which provides richer features for subsequent
image reconstruction. In Section 2 we theoretically analyze the effectiveness of our design.
Our design improves the information content of DOE at spectral dimension, which results
in a reduction of information loss and a more accurate reconstruction.

• We describe a CAFormer to reduce the computational complexity effectively by substituting
self-attention with channel-attention and improve the performance of image reconstruction
greatly, including GateFusion module and CAFM. Finally, more hyperspectral information
is reconstructed, and the hyperspectral imaging wavelength bands are expanded from
460-700nm to 460-900nm.

In Section 2. Section 3 and Section 4 we present the specific conceptual foundations of our
proposed method. Section 5 outlines the results, verifying the effectiveness and feasibility of our
method. The major lessons learned thus far are summarized in the concluding Section 6.
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Fig. 1. (a-b) The equalization designed DOE generates a set of spectrally-varying PSFs
with an anisotropic shape. Light emitted by the target is modulated by DOE and imaged on
the detector. (c) Coded image is subsequently input into the CAFormer network to output
the HSI cube. (d-e) After adding the recalibration information of the light source, the true
reflectivity cube of the target can be recovered. GT is the ground truth.
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Fig. 2. Light field of a wide wavelength-band point light source propagating from infinity
to detector surface. Different wavelengths of light are imaged simultaneously on the detector
surface, and their images are linearly superimposed.

2. Design and analysis of diffraction elements

The main purpose of this section is to describe the principle of diffraction element design. We
evaluated the effectiveness of designed DOE by using Fisher information as an evaluation index.

2.1. Mathematical model of diffraction imaging

Image coding relies on a DOE to modulate the phase of incident light. DOE transmits light with
different wavelengths, which are converted into a phase changes, resulting in wavelength-specific
encoded images. To calculate the PSF of the system, it’s necessary to assume that point light
is incident. As shown in Fig. 2, considering the point light source located at infinity, the light
source is approximately directional. In the object space whose coordinates are expressed as (x, y),
a plane incident light field u0 with an initial phase ϕ0 and an initial amplitude intensity A0 can be
expressed as:

u0(x, y) = A0(x, y)eiφ0(x,y). (1)
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DOE changes the phase but not the amplitude:

uDOE(x, y) = A0(x, y)ei(φ0(x,y)+φDOE(x,y)), (2)

where uDOE is the light field of the back surface of DOE. ϕDOE represents the phase change
caused by DOE, which can be expressed as:

ϕDOE(x, y) =
2π
λ
∆nλhDOE(x, y), (3)

where λ is the wavelength of incident light; ∆nλ is the refractive index contrast between DOE
and air; hDOE is the height function of DOE. To design DOE is to design its height function.

We calculate the propagation process of light from the DOE rear surface to the sensor surface
using the Fresnel diffraction formula. Thus, the light field usensor at the sensor surface is given by:

usensor(x′, y′) =
eikz

iλz

∬
uDOE(x, y)e

ik
2z {(x

′−x)2+(y′−y)2 }dxdy, (4)

where (x′, y′) represents the coordinates of image space, k is the wave number of the incident
light field, and z is the distance from the rear surface of DOE to the sensor surface.

Image at a specific wavelength, which is PSF, can be calculated by the following formula:

pλ(x′, y′) = |
eikz

iλz

∬
uDOE(x, y)e

ik
2z {(x

′−x)2+(y′−y)2 }dxdy|2. (5)

For convenience, we can calculate PSF with the help of Fourier transform F (·):

pλ(x′, y′) ∝ |F [eiφDOE(x,y)ei π
λz (x

2+y2)]|2. (6)

To conclude, the image of a target consists of the sum of images at all wavelength bands:

Isensor(x′, y′) =
∫
Ωcamera(λ)([Iλ(x′, y′) ∗ pλ(x′, y′)]dλ, (7)

where Iλ is the monochromatic image at wavelength λ, Ωcamera is spectral response function of
the camera. In Eq. (7), we see that if we design a DOE that produces different PSFs for different
wavelengths of incident light, then we can encode the information of different wavelengths using
this imaging model. The encoded 2D image can be decoded into the hyperspectral cube of the
target through a specific reconstruction algorithm.

2.2. Design method of the diffraction element

Based on the method described by Jeon et al. [17], the DOE plane is viewed as a polar coordinate
plane (r, θ) in the first step. In terms of a Fresnel len with characteristic wavelength λ and focal
length f , the height function hDOE can be expressed as follows:

∆h(r; λ) = h0 − hDOE

=
λ∆ϕDOE

2π∆nλ

=
2πm − 2π

λ (
√︁

r2 + f 2 − f )
2π∆nλ

=
mλ − (

√︁
r2 + f 2 − f )
∆nλ

,

(8)

where m is a positive integer, usually 1, h0 is the height of the flat substrate on which DOE is
etched, hDOE is the DOE height after etching, and ∆h is the etching depth of the substrate.
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To modulate light with wavelengths from 460nm to 900nm rather than only a single characteristic
wavelength, we can make radius at different angles θ on DOE plane correspond to different
characteristic wavelengths. The characteristic wavelength increases or decreases as the angle in
the polar coordinate system changes:

λ(θ) =

⎧⎪⎪⎨⎪⎪⎩
λmin + (λmax − λmin)

(Nθ)α

(2π)α 0 ≤ θ< 2π
N ,

λ(θ − 2π
N ) θ ≥ 2π

N .
(9)

where N is a positive integer, α is the distribution scaling factor. When N = 2 and α = 1.0,
substituting Eq. (9) into Eq. (8), the height map of DOE obtained is shown in Fig. 3.

1mm

λ

λ

(a) (b)

λ

λ

Fig. 3. Height pattern of designed DOE. (a) Plane view of DOE with diameter of 5mm
and characteristic wavelength of 460 − 900nm. (b) Local 3D view of DOE etched on the
substrate of 600µm.

Figure 4(b) illustrates PSFs generated by DOE in Fig. 3 as the characteristic wavelengths
distribution rule. In some reconstructed hyperspectral images based on simulation, we find that
the spectral accuracy of the long-wavelength band was lower than that of the short-wavelength
band (as shown in Fig. 9). After analysis, we find that the PSF size decreases significantly with
increasing wavelength. There is a possibility that the small size of the long-wavelength PSF
will cause it to be obscured by the PSFs of other wavelengths, resulting in poor coding of the
long-wavelength information, subsequently reducing the accuracy of long-wavelength spectral
reconstruction. In view of this fact, we hope that the PSF size of all wavelengths will be more
equal.

Fig. 4. When the scaling factor α we propose is 0.7, 1.0 and 1.3, different designed DOEs
produce different PSF sets.
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Height map of a DOE can be approximately differentiated into many rectangular holes, and
the light intensity solution I(x, y) of Fraunhofer diffraction of rectangular holes is:

I(x, y) = I0sinc2(
ax
λf

)sinc2(
by
λf

), (10)

where I0 is the intensity of the center point, a and b is the size of the rectangular hole, λ is the
wavelength of the incident light, and f is the imaging distance. This fact suggests that on the
DOE we designed, when the characteristic wavelength distribution is more compact, the size
of the rectangle holes will become smaller, resulting in a larger diffraction spot. Therefore, we
think of introducing a scaling factor, α, into Eq. (9) to adjust the distribution of characteristic
wavelengths.

As shown in Fig. 4, When α = 1.0, the designed DOE is the same as that proposed by Jeon.
By increasing α value, the PSF size at long wavelength gradually increases, while that of short
wavelength decreases. On the contrary, the PSF size of long wavelength reduces with an increase
in α.

To calculate the PSF size, we binarize the PSF, calculate the outer rectangle of the PSF, and
define the diagonal length of the rectangle as the size. Figure 5(a) shows the PSF sizes under
different scaling factors. In our trial and analysis, we found that PSFs have approximate sizes at
different wavelengths when α = 1.3, achieving the desired equalization design.
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Fig. 5. (a) PSF sizes under different scaling factors. (b) Similarity between PSFs at adjacent
wavelengths under different scaling factors. The higher the correlation coefficient and the
lower the cosine distance, the more similar the PSFs are.

An effective DOE design can enhance the distinction between information at different
wavelengths by increasing the difference between PSFs. This means that the lower the correlation
among PSFs, the more efficient the DOE will be. As shown in Fig. 5(b), we calculate the correlation
coefficient and cosine distance between PSFs of these DOEs. Our proposed equalization designed
DOE (α) has the lowest correlation coefficient and the largest cosine distance, so the correlation
between different PSFs is the lowest. This proves that the DOE we designed is more effective.

2.3. Evaluation indicator of the diffraction element

Fisher information is a way to measure the amount of information about unknown parameters θ
(λ in our case) carried by observable random variable X (PSF in our case). Fisher information is
defined as:

FI(θ) =E(
∂2lnX(s; θ)
∂θ

)

=
1

X(s; θ) + β
(
∂X(s; θ)
∂θ

)2,
(11)

where E represents the expectation of the function, s is the independent variable of X, and β
represents system noise.
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In microscopic 3D imaging, Fisher information is often used to evaluate depth sensitivity of
PSF. Based on these studies, we propose to calculate the Fisher information related to wavelength
of DOE to determine which DOE is best suited to encoding in hyperspectral imaging. According
to Eq. (11), the Fisher information FI(λ) is as follows:

FI(λ) =
Np∑︂
k=1

1
pλ(k) + n

(
∂pλ(k)
∂λ

)2 (12)

where pλ(k) is the intensity of PSF on pixel k at wavelength λ, and n represents the image noise.
Fisher information is an array for a 3D PSF. The total amount of information in DOE is the

sum of all the numbers in the array. In Table 1, we list the Fisher information for different scaling
factors. We can see from the data that the equalization designed DOE proposed (α = 1.3) has
the maximum Fisher information. This indicates that this DOE is capable of carrying more
wavelength information. In addition to calculating the size, similarity, and the total amount of
information, we conducted reconstruction of simulation and real images, as shown in Sec. 5.2, to
demonstrate the efficacy of our proposed design.

Table 1. Fisher information of DOEs with different scaling
factors.

Scaling factor α = 0.7 α = 1.0 α = 1.3

Fisher information 0.9603 1.2991 1.6848

Table 2. Reconstruction experiment results of equalization
designed DOE.

Pattern MPSNR↑ MSSIM↑ SAM↓

α=0.7 29.27 0.973 7.139

α=1.0 29.83 0.977 4.614

α=1.3 31.69 0.987 3.585

3. Reconstruction network

The two most significant research subjects in snapshot hyperspectral imaging are the coding
mode and the reconstruction method. An efficient reconstruction algorithm can be applied to a
variety of different snapshot hyperspectral imaging systems (such as CASSI, our system, and
other phase-coded based hyperspectral imaging systems). In contrast to Jeon et al., we propose a
reconstruction algorithm that is faster, requires less computation, but provides a better result.
This section provides a detailed description of the structure of our reconstruction network.

3.1. Architecture of reconstruction network

The overall architecture of CAFormer is shown in Fig. 6. We adopt a U-shaped structure that
consists of an encoder, a bottleneck, and a decoder. CAFormer is built up by channel-attention
former module (CAFM) and GateFusion module. Firstly, we feed the coded image I into the
model. Then a 3 × 3 conv (convolution with kernel size = 3) layer is used to map I into feature
I0 ∈ RH×W×C. Secondly, CAFormer exploits N1 CAFMs, N2 CAFMs, and N3 CAFMs to generate
hierarchical features. The downsample module is a 3 × 3 conv layer that down samples half
scale the feature maps and doubles the channels. Thirdly, there is a bottleneck that consists of
N4 CAFMs. Finally, a structure opposite to the encoder is employed to decode these features.
Output of our network is an HSI cube Î ∈ RH×W×C.
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(a)(a)
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Fig. 6. (a) The overall architecture of CAFormer. (b) Structure of Channel-attention
transformer module. (c) Structure of GateFusion module.

3.2. Details of reconstruction network

Convolutional neural networks have been shown to provide a faster and more accurate hy-
perspectral reconstruction than iterative optimization due to their time efficiency. With the
development of neural networks, another form of neural network, transformer [37], was proposed.
Transformer enhances the performance of recovery primarily by replacing the convolution with
the more computationally intensive matrix multiplication within the convolutional neural network.
Meanwhile, its internal connection structure is designed to make multiplication operations more
efficient. Using transformer for CASSI hyperspectral reconstruction, Cai et al. [27,28] achieved
the SOTA effect. We present a CAFormer network to reduce the computation of transformer and
maintain the reconstruction performance at the same time.

Channel-attention Former Module. Recently researchers have come up with an idea that
goes against the grain of human experience that the effectiveness of Transformer does not
depend on the complexity of its computation, but rather on its overall structure. In this case,
we suggest substituting a simple convolution operation for the complicated attention operation.
It preserves the overall structure while reducing the calculation. In contrast, in the work of
hyperspectral reconstruction, the difference from ordinary low-level tasks lies in that the spatial
information of HSI cube is similar in different channels, and the spectral information between
different channels is of greater significance. This property is in accordance with the channel
attention operation. As shown in Fig. 6(b), we propose a CAFM to promote information recovery
between spectral bands by replacing self-attention with channel-attention which greatly reduce
the amount of computation. We developed the CAFormer network by stacking CAFMs with
different parameters.

GateFusion. To strengthen the fusion of the same-scale features of the encoder and decoder,
skip connections were used in the past to permit the decoder to borrow relevant information
from the encoder. The importance of these pieces of information is different, and there will
be some redundancy among them. A simple skip connection is not capable of sorting out
relevant information from redundant information. So, we introduce a gate module as shown in
Fig. 6(c). GateFusion can extract learnable characteristics from encoders and filter out unnecessary
information, which enables computing resources to be used to reconstruct high-precision results.
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4. Dataset and PSF calibration

We have fabricated the DOE designed by Jeon and the DOE designed in this article. Figure 1
illustrates the hyperspectral imaging process in the experiment. The first step is to install the
processed DOE in front of the imaging detector and the target scene with spectral information
is imaged by DOE. PSF encodes different wavelength information with different rotation
directions. The coded information of all wavelengths is superimposed on the detector to obtain
the hyperspectral coded image. Input the encoded image into a trained CAFormer to obtain the
decoded hyperspectral information cube. This hyperspectral cube contains both the reflectivity
of the target and the spectral information of the light. It is necessary to calibrate the spectrum of
light for accurate reflectivity measurements of the target.

For image reconstruction, neural networks require a large amount of paired data. Nevertheless,
when it comes to real scene, different systems have different pixel sizes, image resolution, and
field of view, which makes it difficult to obtain a one-to-one correspondence between the coded
image and the HSI cube. Thus, we propose to establish the training dataset utilizing real PSFs
and simulated imaging process.

Figure 7 shows our device for calibrating PSFs. The point light source is simulated by passing
a broad-spectrum light source through a small hole. The directional light tube helps to simulate a
point light at infinity. Monochromatic light is simulated by placing a narrow band filter in front
of the camera. We can calibrate the PSFs by imaging monochromatic point lights with different
wavelengths at infinity with our imaging system. The encoded image simulation is carried out
using the following formula [38]:

I(x, y) =
M∑︂

m=1
pλm (x, y) ∗ Iλm (x, y) + n, (13)

where M is the number of spectral channels, I is the encoded image, pλ and Iλ are the PSF and
image at wavelength λ respectively, and n is the simulated image noise.

Broadband light source

Engineered Diffuser

Narrow-band filter

Pinhole

Collimator

Camera

DOE

Fig. 7. Experimental device for calibrating PSF.

Simulation image I and its corresponding HSI cube Iλ constitute a pair of data. With enough
training data, CAFormer is capable of decoding real images. A one-to-one correspondence exists
between the PSF set, dataset, and network. It is necessary to rebuild the dataset and retrain the
network when the PSF changes due to a change in DOE.
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5. Experiments and results

This section describes detailed experiments to verify the effectiveness of our method. In Sec.
5.2, we implement simulation and real scene experiments to show that our designed equalization
coded aperture can provide a distinct improvement. Sec. 5.3 demonstrates that our reconstruction
algorithm is accurate and fast.

5.1. Implementation

Hardware Preparation. The RGB camera we use is pco.edge 5.5 with CIS2521 image sensor.
Its pixel size is 6.5µm, and the image resolution is 2560 × 2160. In the actual experiments of
Sec. 5.2, we use the Gaia Field V10 hyper spectrometer to obtain reflection curves of targets and
compare them with the reconstruction results of real encoded images to verify the performance
of our system. We have processed Jeon’s designed DOE (α = 1.0) and our improved equalization
designed DOE (α = 1.3). The DOE pattern is etched on JGS2 quartz glass with a diameter of
5mm and a thickness of 0.6mm.

Dataset. Our hyperspectral imaging systems image at wavelengths between 460nm and 900nm
with a spectral sampling rate of 10nm. Our simulation dataset is derived from the open source
ICVL [39] dataset and the PSFs of the real system. ICVL dataset consists of 140 hyperspectral
images with a spatial resolution around 1400×1300. We select 20 complete images as the test
set, and the remaining 120 images are cut into 256×256 pixels as the training set. Our training
set contains a total of 2950 data pairs. As described in Sec. 4 different PSF set need to be used to
build different simulation datasets in different experiments. Sec. 5.2 uses simulation PSF sets (as
shown in Fig. 4) for the simulation experiments and calibrated PSF sets (as shown in Fig. 10) for
the actual experiments. In Sec. 5.3, we generate the simulation training dataset based on the
actual PSF and hyperspectral data.

Training Configurations. Following the settings of MST++, all the models are trained with
Adam optimizer (lr=0.0002, β1= 0.9 and β2 = 0.999) for 100 epochs and cosine schedule is used
to decay the learning rate. Considering that PSF is directional in nature, we did not apply any
data enhancement such as rotation to training data. Training is completed on an RTXA6000
GPU.

Evaluation Metrics. Generally, researchers evaluate the accuracy of RGB image reconstruction
by comparing peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [40]. While in
hyperspectral image reconstruction tasks, PSNR and SSIM are calculated separately for each
channel and then averaged to determine the spatial resolution accuracy of the reconstructed
images. In addition to spatial resolution, spectral accuracy is also an imperative evaluation
criterion, which is usually gauged by spectral angle mapping (SAM) [41].

To assess the effectiveness of each method, we utilize the following three evaluation metrics to
evaluate the reconstruction results: mean peak signal-to-noise ratio (MPSNR), mean structural
similarity (MSSIM) and spectral angle mapping (SAM). Using the following formula, we can
calculate the SAM of the spectral cube:

SAM = cos−1(
yT ŷ

∥y∥ ∥ŷ∥
) = cos−1(

yT ŷ√︁
yTy

√︁
ŷT ŷ

). (14)

5.2. Validation of designed DOE

Here, we provide an innovative equalization designed phase-coding method. We design detailed
simulation and actual experiments to test the effectiveness of this solution in the next subsection.

Simulation experiment. We simulate three DOEs with MATLAB, adding a processing error
of within 10 nm to the DOE height function. Figure 4 illustrates the generated three sets of
PSFs. Separately, we create three sets of simulation datasets for testing and training. Table 2
summarizes the reconstruction results. Gradually improving the long-band features will result in
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incremental improvements in the quantitative image reconstruction index. According to Fig. 8,
within 700nm wavelength, the quality of the long wavelength features hardly affect the image
quality. But at 850nm and 900nm, only under the condition of sufficient features (α=1.3), the
spectral accuracy and image quality can be maximized. When α=1.0, PSFs lead to a wrong
spectrum but the image quality is not bad. When α=0.7, PSFs have worse results in both spectral
accuracy and image quality. Figure 9 illustrates the difference in spectral accuracy clearly. The
spectral accuracy at short wavelengths tends to be consistent, while the spectral accuracy at
long wavelengths has a big difference. The equalization design we propose achieves the highest
spectral accuracy.

Ground Truth

Fig. 8. Reconstructed simulation hyperspectral images of Scene 3 with 4 out of 45 spectral
channels. 3 sets of PSFs lead to different results.
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Fig. 9. Spectral curve of reconstructed simulation hyperspectral images of Scene 3. 3 sets
of PSFs lead to different results.
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Real scene experiment. We further apply our method to the reconstruction of real images.
We etched the DOE designed by Jeon et al. (α = 1.0) and the DOE described in this paper
(α = 1.3) on JGS2 quartz glass with a diameter of 5mm and a thickness of 0.6mm. In Fig. 10,
real PSFs generated from these two DOEs are calibrated. Figure 11 shows the reconstruction
results on real images. As for image quality, the DOE we designed is superior in terms of clarity
and detail. In comparison to a commercial spectrometer, our system yields a more accurate
spectral curve.

460nm 560nm 660nm 760nm 860nm

Fig. 10. Calibrated real PSFs. The red circle is the manually marked circumcircle of PSF.
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Fig. 11. Reconstruction results on real scenes.

5.3. Validation of designed network

Our proposed algorithm for coded hyperspectral reconstruction is superior to both the reconstruc-
tion algorithm proposed by Jeon and the existing coded hyperspectral reconstruction solution in
terms of computational complexity and reconstruction accuracy. In this subsection, we use real
PSFs (as shown in Fig. 10) to generate simulation data sets. We demonstrate the advantages and
effectiveness of our algorithm by reconstructing simulation images.

GateFusion Module. We suggest using GateFusion module instead of simple concatenation
for the jump connections in a u-shaped network. By filtering the pre-features and subsequently
absorbing the post-features for reference, the gate module can facilitate mutual learning among
features. Table 3 shows the ablation results of the GateFusion module. As can be seen from the
data, the GateFusion module improves image quality and spectral accuracy to a certain extent.
Hence, GateFusion can provide better assistance in screening spectral information, confirming
our hypothesis. We consider it a good alternative to concatenation fusion, given its low overhead,
which provides a reference for other spectral reconstruction tasks.
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Table 3. Ablation experiment results of GateFusion module.

Network GateFusion MPSNR↑ MSSIM↑ SAM↓

CAFormer - 29.48 0.961 6.474

CAFormer ✓ 29.54 0.961 6.196

Quantitative Comparison. We quantitatively compare the performance of CAFormer and
other works (HINet [29], MIRNet [42], MST++ [28]) and the results are shown in Table 4 and
Fig. 12. Here we put the best results in bold and bold. Among these works, MST++ used to
be the most efficient network, won a number of hyperspectral reconstruction competitions [28].
Overall, our proposed CAFormer outperformed these works with lower computation. As shown
in Table 4, ours FLOPs is less than the 3 SOTA networks, which means our algorithm is three
times faster than MST++. In contrast to other algorithms, the PSNR of our reconstructed image
is higher with the minimum computational resources. And our reconstructed spectral is more
accurate. All algorithms share the same dataset, which demonstrates the benefits of our network.
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Fig. 12. We select some areas to output the spectral curve reconstructed by 3 SOTA
algorithms, HINet and our CAFormer. Please zoom in for better visualization performance.

Table 4. Quantitative experiment results of 3 SOTA works and ours
CAFormer.

MPSNR↑ MSSIM↑ SAM↓ Params↓ FLOPs↓

HINet 22.92 0.903 9.445 11M 70.84G

MIRNet 26.25 0.933 7.862 3.17M 60.81G

MST++ 29.33 0.955 6.265 3.37M 48.23G

Ours 29.54 0.961 6.196 5.76M 17.42G

Qualitative Comparison. We also select some samples of the results to analyze the perfor-
mance of each method qualitatively. Fig. 13 illustrate qualitative comparisons of our CAFormer
with some representative learning-based methods. We select one sample with more colors and
multiple image information taken from the test data set to evaluate the networks’ performance.
Our network perform better than HINet and MIRNet visibly. In terms of the image as a whole,
we’re about as good as MST++. But by zooming in on the details, our image information is
much more accurate. In the case of insufficient features at the long wavelength bands, MST++
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will show wrong images (orange boxes) in images at 850nm and 900nm, but our image recovery
is correct.

Fig. 13. Reconstructed simulation hyperspectral information comparisons of Scene 1 with
45 spectral channels from 460nm to 900nm.

We also compared our method with the iterative reconstruction method proposed by Jeon using
a hyperspectral dataset captured by Xu [43]. The reconstruction results are shown in Fig. 14.
Our method has advantages in both image quality and spectral accuracy.

Ground Truth Jeon’s Ours

27.39

0.773

16.851

28.72

0.804

14.623

Fig. 14. Reconstructed simulation hyperspectral information comparisons between ours
and Jeon’s method.

6. Conclusion

This project was undertaken to design an overall imaging framework superior to existing
SCI technology. We proposed a better reconstruction algorithm and implemented a complete
hyperspectral imaging process. Using our designed DOE, spectral information can be better
encoded. The most relevant aspect of the paper is that we propose a state-of-the-art (SOTA)
algorithm for reconstructing hyperspectral images from RGB images. Eventually, to calibrate
our system, we propose a method based on the comparison of simulation data and real data. We



Research Article Vol. 31, No. 12 / 5 Jun 2023 / Optics Express 20503

have proposed a method which is superior to the existing technology in terms of both imaging
system and algorithm, putting snapshot compact hyperspectral technology closer to a practical
application. Additionally, there are some degradation processes in the real shooting data that
are different from those in the simulation data. This causes the real shooting performance to
be worse than the simulation performance. This problem affects all RGB images and HSI cube
technologies. We hope that in the further research, real-shot data sets or more realistic simulation
data sets will be established in order to achieve better real shooting performance.
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