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Single image super-resolution (SISR) aims to reconstruct high-resolution (HR) images from given low-
resolution (LR) images. It is an ill-posed problem because one LR image corresponds to multiple HR
images. Recently, learning-based SISR methods have greatly outperformed traditional methods.
However, PSNR-oriented, GAN-driven and flow-based methods suffer from over-smoothing, mode col-
lapse and large model footprint issues, respectively. To solve these problems, we propose a novel SISR
diffusion probabilistic model (SRDiff), which is the first diffusion-based model for SISR. SRDiff is opti-
mized with a variant of the variational bound on the data likelihood. Through a Markov chain, it can pro-
vide diverse and realistic super-resolution (SR) predictions by gradually transforming Gaussian noise into
a super-resolution image conditioned on an LR input. In addition, we introduce residual prediction to the
whole framework to speed up model convergence. Our extensive experiments on facial and general
benchmarks (CelebA and DIV2K datasets) show that (1) SRDiff can generate diverse SR results with rich
details and achieve competitive performance against other state-of-the-art methods, when given only
one LR input; (2) SRDiff is easy to train with a small footprint(The word ‘‘footprint” in this paper repre-
sents ‘‘model size” (number of model parameters).); (3) SRDiff can perform flexible image manipulation
operations, including latent space interpolation and content fusion.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Over the years, single image super-resolution (SISR) has drawn
active attention due to its wide applications in computer vision,
such as object recognition [1,2], remote sensing [3], and surveil-
lance monitoring tasks [4,5]. SISR aims to recover high-resolution
(HR) images from low-resolution (LR) images, which is an ill-
posed problem because multiple HR images may be degenerated
to one LR image, as shown in Fig. 1.

To establish the mapping between HR and LR images, many
deep learning-based methods have emerged and can be catego-
rized into three main types: PSNR-oriented, GAN-driven and
flow-based methods. PSNR-oriented methods [6–13] are trained
with simple distributions and assumption-based losses (e.g., Lapla-
cian for L1 and Gaussian for L2) and achieve excellent PSNRs. How-
ever, these losses tend to drive the SR result to an average of
several possible SR predictions, causing over-smoothed images
with high-frequency information loss. One ground-breaking solu-
tion to address the over-smoothing problem is the class of GAN-
driven methods [14–17], which combine content losses (e.g., L1
and L2) and adversarial losses to obtain sharper SR images with
better perceptual quality. However, GAN-driven methods easily
fall into mode collapse[18,19], which leads to a single generated
SR sample without diversity. Additionally, the GAN-based training
process does not easily converge and requires an extra discrimina-
tor which is not used in inference. Flow-based methods [18]
directly settle the ill-posed problem with an invertible encoder,
which maps HR images to the flow-space latent variables condi-
tioned on LR inputs. Trained with the negative log-likelihood loss,
flow-based methods avoid training instability but suffer from ex-
tremely large footprints and high training costs due to the
strong architectural constraints to maintain the bijection between
the latent variables and data.

Recently, the successful adoption of diffusion probabilistic mod-
els (diffusion models for short) in image synthesis tasks [20],
speech synthesis tasks [21,22], music generation tasks [23] and
3D cloud tasks [24] has witnessed the power of diffusion models
in generative tasks. A diffusion model uses a Markov chain to con-
vert the data x0 in a complex distribution to latent variable xT in a
simple distribution (e.g., Gaussian) by gradually adding noise �
during the diffusion process, and the noise � in each diffusion step
is predicted to recover the data x0 through a learned reverse pro-
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Fig. 1. Random SR (8x) predictions generated by our method. The LR/HR images are shown on the top/bottom left respectively. The right columns contain diverse SR
predictions and their facial regions, which are different from each other in terms of expressions and attributes. For example, the first nose looks flat, while the third nose looks
straight. The SR predictions generated by our methods all correspond to the given LR image and obtain high image quality.
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cess. Diffusion models are trained by optimizing a variant of the
variational lower bound, which is efficient and avoids the mode
collapse issue encountered by GANs.

In this paper, we propose a novel SISR diffusion probabilistic
model (SRDiff) to tackle the over-smoothing, mode collapse and
large footprint problems in previous SISR models. Specifically, 1)
to extract the image information from an LR image, SRDiff exploits
a pre-trained LR encoder to convert the LR image into hidden con-
ditions; 2) to generate the HR image conditioned on the LR image,
SRDiff employs a conditional noise predictor to recover x0 itera-
tively; 3) to speed up convergence and stabilize training, SRDiff
introduces residual prediction by taking the difference between
the HR and LR images as the input x0 in the first diffusion step,
making SRDiff focus on restoring high-frequency details. To the
best of our knowledge, SRDiff is the first diffusion-based SR model
and has several advantages:

� Diverse and high-quality outputs: SRDiff converts Gaussian
white noise into an SR prediction through a Markov chain,
which does not suffer from mode collapse and over-
smoothing issue, and can generate diverse and high-quality SR
results.

� Stable and efficient training with small footprints: Although
the data distribution of HR images is hard to estimate, SRDiff
utilizes a variant of the variational bound maximization and
applies residual prediction. Compared with GAN-driven meth-
ods, SRDiff is stably trained with a single loss and does not need
any extra modules (e.g., a discriminator, which is only used dur-
ing training). Compared with flow-based methods, SRDiff has no
architectural constraints and thus enjoys benefits such as small
footprints and fast training.

� Flexible image manipulation: SRDiff can perform flexible
image manipulation, including latent space interpolation and
content fusion, using both the diffusion process and the reverse
process, which shows broad application prospects of the pro-
posed method.

Our extensive experiments on the CelebA [25] and DIV2K [26]
datasets show that 1) SRDiff can reconstruct multiple SR results
given one LR input and achieve promising results; 2) compared
with GAN-based methods, SRDiff is easy and stable to train with
only one loss term and no extra discriminator module; 3) com-
pared with SRFlow, SRDiff is fast to train (approximately 28 h on
1 GPU until convergence) and has only 1/4 of the number of
parameters; 4) we can manipulate the generated SR images in
the latent space to obtain more diverse outputs.
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2. Related Works

2.1. Single Image Super-Resolution

Recently, deep learning methods are widely adopted for SISR,
and we categorize them into three types: PSNR-oriented, GAN-
driven and flow-based methods.

PSNR-oriented methods. The training goal of PSNR-oriented
methods is to minimize the L1 or L2 loss between the ground truths
and the SR images recovered from the input LR images. SRCNN [6]
set a precedent of end-to-end mapping between the LR and HR
images. [27,28] then applied residual neural network techniques
to SISR tasks and found that increasing recursion depth can
improve SISR performance. In order to solve the convergence prob-
lem brought by Stochastic Gradient Descent (SGD), they intro-
duced recursive-supervision and skip-connection. [7] removed
redundant modules in the residual neural network and expanded
the model size. [29] proposed a multi-scale residual block (MSRB),
which was capable of adaptively detecting and fusing image fea-
tures at different scales and obtained accurate SR images effi-
ciently. [9] used different modules to reconstruct different
information of frequencies, since shallow network structures take
the advantage of recovering low-frequency information and deep
network structures restore high-frequency information well. [30]
proposed the first Cross-Scale Non-Local (CS-NL) attention module
for SISR task. They proved that the cross-scale non-local attention
is able to obtain better reconstruction by making full use of the
abundant repeated structures in the images, and integrating
cross-scale feature similarities with local and in-scale non-local
priors improves the SISR performance. To improve super-
resolution performance, [31] utilized feature distillation with both
dense concatenation and skip connection to extract deep and shal-
low features. They also used attention mechanism to adjust
channel-wise features and restore high-frequency feature
information.

GAN-driven methods. The pioneering work of GAN-driven meth-
ods was SRGAN [16], which used SRResNet and perceptual loss, as
well as adversarial loss, to improve the naturalness of the recov-
ered image. ESRGAN [17] further enhanced SRGAN with structure
and loss function adjustments. It replaced the Residual Block with
the Residual-in-Residual Dense Block (RRDB) as the basic unit of
the whole network, and abandoned batch normalization. It also
proved that calculating the perceptual loss before the activation
layer is beneficial to restoring more detailed information. [14,32]
solved the over-smoothing problem through perceptual restric-
tions [33,34]. [35] proposed a general framework called Generative



Fig. 2. Overview of the two processes in SRDiff. The diffusion process goes from right to left, and the reverse process goes from left to right. h in ph denotes the learnable
components, including the conditional noise predictor and low-resolution encoder in SRDiff.
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Collaborative Networks (GCN), which optimized the generator (i.e.,
the mapping of interest) in the feature space of a network. [15]
explored GAN-driven super-resolution framework to face SR task.
They addressed constraints to each step of the SR network and pro-
posed a facial attention loss to restore the attributes of the adjacent
area to the facial landmarks. Later, DeepSEE [36] leveraged seman-
tic maps to solve the ill-posed SR problem and allowed for control-
ling over both shape and appearance for face SR tasks. However,
GAN-driven methods can easily suffer from the mode collapse
problem and only produce samples from a single or few modes
of the distribution but ignore other modes, according to the papers
[37,38]. Thus, GANs may lead the output samples without diver-
sity. Mode collapse problem can be more severe in conditional gen-
eration task [18,19,39]. Because they easily learn to ignore the
stochastic input signal when the conditional inputs (e.g., low-
resolution image in super-resolution task) exist. Although some
techniques are proposed to alleviate mode collapse in GAN (e.g.,
bayesian inference [40] and explicit regularization loss [41]), they
have not been verified in the super-resolution task to achieve
state-of-the-art and diverse results.

Flow-based methods. Flow-based methods [42–44] are a kind of
generative model that can map the training data to a space where
its distribution is factorized, through a series of learned transfor-
mations that are invertible. Compared with PSNR-oriented meth-
ods and GAN-driven methods, flow-based methods have received
relatively less attention in SISR tasks. The first flow-based SISR
method was SRFlow [18], which built an invertible neural network
to transform a Gaussian distribution into an HR image space
instead of modeling a single output. In this way, SRFlow explicitly
addresses the ‘‘one-to-many” mapping problem (also called ill-
posed problem) in super-resolution task1.
2.2. Diffusion Models

Diffusion models, first presented in [45], are a kind of genera-
tive model using a Markov chain to gradually add noise to a data
point and convert it to a latent variable through an iterative diffu-
sion process. And through a learned reverse process, the diffusion
models gradually transform a latent variable in a simple distribu-
tion (e.g., Gaussian) to a data point in the complex distribution.
The diffusion model is flexible and suitable for tackling ‘‘one-to-
many” mapping problem and can generate high-quality results in
many tasks, including image synthesis tasks [20], speech synthesis
[21,22], music generation tasks [23] and 3D cloud tasks [24]. In
image synthesis tasks, [20] proved the capability of generating
high-quality samples for the diffusion model. It exploited straight-
forward log-likelihood evaluation, and the training process used
1 The ‘‘one-to-many” mapping problem in super-resolution task means that one LR
input has multiple corresponding SR solutions.
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variational inference to explicitly train the Langevin dynamic sam-
pler. In speech synthesis tasks, DiffWave [21] utilized a versatile
diffusion model for waveform generation and could generate
high-fidelity audios. DiffSinger [22] applied the diffusion model
to synthesize high-quality and expressive singing voice to tackle
the over-smoothing and unstable training issues in the previous
methods. It also introduced a shallow diffusion mechanism to
make better use of the prior knowledge learned by the simple loss.
In music generation tasks, [23] introduced a technique for training
diffusion models on sequential data and applied it to model sym-
bolic music. For 3D point cloud generation, [24] viewed points in
point clouds as particles in a thermodynamic system in contact
with a heat bath and then introduced a diffusion model to estimate
the original point clouds distribution. However, to the best of our
knowledge, diffusion models have not yet been used in SISR tasks.
In this paper, we propose our impressive work, SRDiff, which is
built on a diffusion model to generate diverse SR images with a sin-
gle LR input and solves the over-smoothing, mode collapse and
large footprint issues simultaneously. Our work proves the poten-
tial of the diffusion model for SISR.

3. Diffusion Model

In this section, to provide a basic understanding of a diffusion
model [20], we briefly review its formulation.

A diffusion model is a kind of generative model that adopts a
parameterized Markov chain trained using variational inference
to gradually generate data x0 in a complex distribution from a
latent variable xT in a simple distribution, where T is the total num-
ber of diffusion steps. We set xt 2 Rd to be the result of each diffu-
sion timestep t 2 1;2; . . . ; Tf g, and xt possesses the same
dimensionality d as that of x0. As shown in Fig. 2, a diffusion model
is composed of two processes: the diffusion process and the re-
verse process.

The posterior q x1; � � � ; xT jx0ð Þ, named the diffusion process, con-
verts the data distribution q x0ð Þ to a latent variable distribution
q xTð Þ and is fixed to a Markov chain that gradually adds Gaussian
noise � to the data according to a variance schedule b1; � � � ; bT:

q x1; � � � ; xT jx0ð Þ :¼
YT
t¼1

q xtjxt�1ð Þ;

q xtjxt�1ð Þ :¼ N xt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

p
xt�1; btI

� �
;

ð1Þ

where I is an all-one matrix, N represents the Gaussian distribution,
and bt is a small positive constant that can be regarded as a constant
hyperparameter. We explain how bt is defined in A. Setting
at :¼ 1� bt; �at :¼

Qt
s¼1as, the diffusion process allows for sampling

xt at an arbitrary timestep t in closed form:

q xt jx0ð Þ ¼ N xt ;
ffiffiffiffiffi
�at

p
x0; 1� �atð ÞI

� �
; ð2Þ
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which can be further reparameterized as

xt x0; �ð Þ ¼
ffiffiffiffiffi
�at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
�; � � N 0; Ið Þ; ð3Þ

where 0 is an all-zero matrix.
The reverse process transforms the latent variable distribution

ph xTð Þ into the data distribution ph x0ð Þ parameterized by h. It is
defined by a Markov chain containing learned Gaussian transitions
beginning with p xTð Þ ¼ N xT ;0; Ið Þ:

ph x0; � � � ; xT�1jxTð Þ :¼
YT
t¼1

ph xt�1jxtð Þ;

ph xt�1jxtð Þ :¼ N xt�1;lh xt; tð Þ;rh xt ; tð Þ2I
� �

;

ð4Þ

where lh xt ; tð Þ is the mean of the Gaussian distribution of the t

reverse step, and rh xt; tð Þ2 is the variance of the Gaussian distribu-
tion of the t reverse step.

In the training phase, we maximize the variational lower bound
(ELBO) on the log likelihood log ph x0ð Þ and introduce KL divergence
and variance reduction [20]:

E logph x0ð Þ½ � P Eq log ph x0:Tð Þ
q x1:T jx0ð Þ

h i

¼ Eq logp xTð Þþ
X
tP1

log ph xt�1 jxtð Þ
q xt jxt�1ð Þ

" #

¼ Eq log p xTð Þ
q xT jx0ð Þ þ

X
t>1

log ph xt�1 jxtð Þ
q xt�1 jxt ;x0ð Þ þ logph x0jx1ð Þ

" #

¼ Eq �DKL q xT jx0ð Þjjp xTð ÞLT
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} :

�

�
X
t>1

DKL q xt�1jxt ;x0ð Þjjph xt�1jxtð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Lt�1þ logph x0jx1ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}L0
#
:

ð5Þ

This transformation requires a direct comparison between
ph xt�1jxtð Þ and its corresponding diffusion process posteriors.
Setting

~lt xt ; x0ð Þ :¼
ffiffiffiffiffiffiffiffiffi
�at�1

p
bt

1� �at
x0 þ

ffiffiffiffiffi
at

p
1� �at�1ð Þ
1� �at

xt; ð6Þ

we have

q xt�1jxt; x0ð Þ ¼ N xt�1; ~lt xt ; x0ð Þ; ~btI
� �

; ð7Þ

where ~lt xt; x0ð Þ is the mean of the Gaussian distribution in the t dif-
fusion step, and ~bt is the variance of the Gaussian distribution in the
t diffusion step.

Eqs. (2), (4) and (7) ensure that all KL divergences in Eq. (5) are
comparisons between Gaussians. With r2

t ¼ ~bt ¼ 1��at�1
1��at

bt for

t > 1; ~b1 ¼ b1, and a constant C, we have

Lt�1 ¼ Eq
1

2r2
t
k~lt xt ; x0ð Þ � lh xt; tð Þk2

� 	
þ C: ð8Þ

For simplicity, the training procedure minimizes the variant of
the ELBO with x0 and t as inputs:

min
h

Lt�1 hð Þ ¼ Ex0 ;�;t k�� �h
ffiffiffiffiffi
�at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
�; t

� �
k2

h i
; ð9Þ
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where �h is a noise predictor. The deduction of Eq. (9) is added in C.
During the inference process, we first sample xT � N xT ;0; Ið Þ and
then sample xt�1 � ph xt�1jxtð Þ according to Eq. (4), where

lh xt ; tð Þ :¼ 1ffiffiffiffi
at

p xt � btffiffiffiffiffiffiffiffi
1��at

p �h xt ; tð Þ

 �

;

rh xt ; tð Þ :¼ ~b
1
2
t ; t 2 T; T � 1; . . . ;1f g:

ð10Þ

Then, xt�1 could be paramized as:

xt�1 xt; tð Þ ¼ lh xt ; tð Þ þ rh xt; tð Þ2z
¼ 1ffiffiffiffi

at
p xt � btffiffiffiffiffiffiffiffi

1��at
p �h xt ; tð Þ


 �
þ ~btz; z � N 0; Ið Þ: ð11Þ

4. SRDiff

As depicted in Fig. 2, SRDiff is built on a T-step diffusion model
that contains two processes: a diffusion process and a reverse pro-
cess. Instead of predicting the HR image directly, we apply residual
prediction to predict the difference between the HR image xH and
the upsampled LR image up xLð Þ and denote the difference as the
input residual image x0.

The diffusion process converts x0 into a latent variable xT with a
Gaussian distribution by gradually adding Gaussian noise �, as
implied in Eq. (3). According to Eqs. (4), (10) and (11). The reverse
process is determined by �h, which is a conditional noise predictor
with an RRDB-based [17] low-resolution encoder (LR encoder for
short) D. The reverse process converts a latent variable xT into a
residual image xr via iterative denoising with a finite number of
steps T using the conditional noise predictor �h, which is condi-
tioned on the hidden states encoded from the LR image by the LR
encoder D. The SR image is reconstructed by adding the generated
residual image x̂r to the upsampled LR image up xLð Þ. The top part of
Fig. 3 shows the reverse process (also the inference procedure) and
the bottom part of Fig. 3 shows the network structure of the con-
ditional noise predictor.

SRDiff addresses the problems of previous SISR methods in the
following ways:

� Over-smoothing: Compared with PSNR-oriented methods which
have unimodal assumption on the target data distribution2,
SRDiff does not impose any distribution assumption on the target
data x and directly maximize the variational lower bound of ph xð Þ.
Thus, SRDiff inherently avoids the over-smoothing problem.

� Mode collapse: GAN-driven methods tend to mode collapse
since the generator can find a type of data that is easily able
to fool the discriminator and thus make training unbanlanced.
So they do not cover the full support of the training data [47].
However, SRDiff is a likelihood-based model. According to Eq.
(5), it is trained to put probability mass on all samples in the
training set and tends to cover all the modes. Therefore, SRDiff
avoids mode collapse.

� Large footprint: Compared with flow-based methods that needs
large number of model parameters to keep bijection between
latent and data, SRDiff does not impose any architectural con-
straints and thus saves the model footprint.
2 L1 loss is derived from the Laplace distribution and MSE from the Gaussian
distribution [46]



Fig. 3. The inference procedure and the architecture of the conditional noise predictor in SRDiff. The top part is the inference procedure. We extract the conditional noise
predictor and depict its structure in details in the bottom part of the diagram. The content in parentheses (c, 2c and 4c) after the block name indicates the channel size of each
block. ‘‘Conv2d”, ‘‘Mish”, ‘‘Conv Block”, ‘‘Res Block”, ‘‘Downsample” and ‘‘Upsample” denote a 2D convolution layer, a Mish activation, a 2D convolution block, a residual block,
a downsampling layer and an upsampling layer, respectively; ‘‘CS” and ‘‘ES” denote ‘‘Contracting Step” and ‘‘Expansive Step” respectively. Due to the space limitation, this
diagram is compressed. We enlarge this diagram in B.
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In the following subsections, we introduce the architectures of
the conditional noise predictor, LR encoder, training procedure
and inference procedure.
4.1. Conditional Noise Predictor

The goal of conditional noise predictor �h is to predict the noise
� added at each diffusion timestep3conditioned on the LR image
information, according to Eqs. (9) and (10). As shown in Fig. 3, the
bottom part is the architecture of the conditional noise predictor.
We use U-Net as its main body, taking the 3-channel xt , the diffusion
timestep t 2 1;2; . . . ; T � 1; Tf g and the output of the LR encoder as
inputs. Firstly, xt is transformed into hidden state through a 2D con-
volution block that consists of one 2D convolutional layer and Mish
activation [49]. Then, the LR information is fused with the hidden
state output by the next 2D convolution block. Following Ho et al.
[20], we transform the timestep t into a timestep embedding te using
sin positional encoding proposed in Transformer [50]. After these
operations, the last output hidden state of the 2D convolution block
and te are fed into the residual block of the first contracting step.
Through the following contracting path, middle step, expansive path
and the last 2D convolution block successively, noise added in the t
diffusion step is predicted. Specifically, the contracting path and
expansive path both consist of four steps, each of which successively
applies two residual blocks and one downsampling/upsampling
layer. To reduce the model size, we double the channel size only in
the second and fourth contracting steps and halve the spatial size
of the feature map in each contracting step. The downsampling layer
in the contracting path is a two-stride 2D convolution, and the
upsampling layer in the expansive path is a 2D transposed convolu-
tion. The middle step is inserted between the contracting path and
3 Instead of the original L2 in Eq. (9), following Chen et al. [48], we use L1 for better
training stability.
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the expansive path and consists of two residual blocks. In addition,
the inputs of each expansive step concatenate the corresponding fea-
ture map from the contracting path. Finally, a 2D convolution block
is applied to generate �̂ in the timestep t as the predicted noise,
which is then used to recover xt�1 according to Eqs. (4), (10) and
(11). Our conditional noise predictor is easy and stable to train due
to its multi-scale skip connection. Moreover, it combines local and
global information through contracting and expansive paths.

4.2. LR Encoder

An LR encoder encodes the LR information xe, which is added to
each reverse step to guide the generation to the corresponding HR
space. In this paper, following SRFlow [18], we choose the RRDB
architecture as the LR encoder, which employs a residual-in-
residual structure and multiple dense skip connections without
batch normalization layers. In particular, we abandon the last con-
volution layer of the RRDB architecture because we do not aim to
acquire concrete SR results but rather the hidden LR image
information.

4.3. Training and Inference

In this subsection, we describe the training and inference proce-
dures of SRDiff.

Training. During the training phase, as illustrated in Algorithm1,
the input LR-HR image pairs in the training set are used to train
SRDiff with T total diffusion steps (Line 1). We randomly initialize
the conditional noise predictor �h, and the RRDB-based LR encoder
D is pre-trained by the L1 loss function (Line 2). We then sample a
minibatch of LR-HR image pairs from the training set (Line 4) and
compute the residual image xr (Line 5). The LR images are encoded
by the LR encoder as xe (Line 6), which is fed into the noise predic-
tor �h together with t and xT . Then, we sample � from the standard
Gaussian distribution and t from the integer set 1; � � � ; Tf g (Line 7).
We optimize the noise predictor by performing the gradient step of
Eq.(9) (Line 8).
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Algorithm1: Training

1: Input: LR and HR image pairs P ¼ xkL ; x
k
H

� �� 
K
k¼1, the total

number of diffusion steps T.
2: Initialize: randomly initialize the conditional noise

predictor �h and pre-trained LR encoder D.
3: repeat
4: Sample xL; xHð Þ � P
5: Upsample xL as up xLð Þ, compute xr ¼ xH � up xLð Þ
6: Encode the LR image xL as xe ¼ D xLð Þ
7: Sample � � N 0; Ið Þ, and t � Uniform 1; � � � ; Tf gð Þ
8: Perform the gradient step on

rhk�� �h xt ; xe; tð Þk; xt ¼
ffiffiffiffiffi
�at

p
xr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
�

9: until converged

Inference. We show the inference procedure in the top part of
Fig. 3 and Algorithm2. A T-step SRDiff inference procedure takes
an LR image xL as input (Line 1), as illustrated in Algorithm2. We
sample a latent variable xT from the standard Gaussian distribution
(Line 3) and upsample xL with a bicubic kernel (Line 4). Different
from the training procedure, we encode the LR image xL to xe via
the LR encoder only once before the iterative procedure begins
(Line 5) and apply it in every iteration, which speeds up the infer-
ence process. The iterations start from t ¼ T (Line 6). Each iteration
predicts a noise �̂ and outputs a residual image with a different
noise level, which gradually declines as t decreases. When t > 1,
we sample z from a standard Gaussian distribution (Line 7) and
compute xt�1 using the noise predictor �h with xt ; xe and t as the
inputs (Line 8). When t ¼ 1, we set z ¼ 0 (Line 7), and x0 is the final
residual prediction. x0 also means the predicted residual image x̂r .
An SR image is recovered by adding the residual image x0 to the
upsampled LR image up xLð Þ (line 10).

Algorithm 2: Inference

1: Input: An LR image xL, the total number of diffusion steps T
2: Load: conditional noise predictor �h and LR encoder D
3: Sample xT � N 0; Ið Þ
4: Upsample xL to up xLð Þ
5: Encode the LR image xL as xe ¼ D xLð Þ
6: for t ¼ T; T � 1; � � � ;1 do
7: Sample z � N 0; Ið Þ if t > 1, else z ¼ 0
8: Compute xt�1 according to Eq. (11):

xt�1 ¼ 1ffiffiffiffiffi
at

p xt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p �h xt ; xe; tð Þ

 �

þ rt xt ; tð Þz
¼ 1ffiffiffiffiffi
at

p xt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p �̂

 �

þ rt xt ; tð Þz

9: end for
10: return x0 þ up xLð Þ ¼ x̂r þ up xLð Þ as SR prediction
4 https://drive.google.com/drive/folders/0B7EVK8r0v71pWEZsZE9oNnFzTm8
5. Experiments

In this section, we firstly describe the experimental settings,
including the utilized datasets and model configurations, as well
as the details in training and evaluation. Then, we report the exper-
imental results and conduct some analyses.
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5.1. Experimental Settings

Datasets. SRDiff is trained and evaluated on face SR (8�) and
general SR (4�) tasks. For face SR, we use the CelebFaces Attributes
Dataset (CelebA) [51], which is a large-scale face attributes dataset
with more than 200 k celebrity images. The images in this dataset
cover large pose variations and background clutter. In this paper,
we use the whole training set, which consists of 162,770 images
for training, and evaluate on 5000 images from the test split, fol-
lowing SRFlow [18]. We centrally crop the aligned patches4 and
resize them to 160� 160 as the HR ground truths using the standard
MATLAB bicubic kernel. To obtain the corresponding LR images, we
downsample the HR images with a bicubic kernel. For ProgFSR
[15], we use the progressive bilinear kernel introduced in its original
paper for a fair comparison.

For general SR, we use the DIV2K [26] and Flickr2K [26] data-
sets. These datasets consist of HR RGB images with high content
diversity. During training, we use the whole training datasets
(800 images) in DIV2K and the whole training datasets (2650
images) in Flickr2K. We crop each image into patches with sizes
of 160� 160 as the HR ground truths following SRFlow [18]. To
obtain the corresponding LR images, we downsample the HR
images with a bicubic kernel. During evaluation, we use the whole
validation dataset (100 images) in DIV2K. We downsample the HR
images with a bicubic kernel to obtain the LR images and directly
apply SISR methods to the LR images to obtain the SR predictions
without cropping.

Model Configuration. Our SRDiff model consists of a 4-step con-
ditional noise predictor and an LR encoder with multiple RRDB
blocks. The number of channels c in the first contracting step is
set to 64. The numbers of RRDB blocks in the LR encoder are set
to 8 and 15 for CelebA and DIV2K, respectively, and the channel
size is set to 32. For the diffusion process and reverse process,
we set the number of diffusion steps T to 100, and our noise sched-
ule b1; . . . ; bT follows Nichol et al. [52] and is described in detail in
A, which has been proven beneficial for training. We also explore
the model performance under different values of T and c in
Section 5.3.

Training and Evaluation. Firstly, we pre-train the LR encoder D

using an L1 loss for 100 k iterations for the sake of efficiency. The
training process of the conditional noise predictor uses Eq. (9) as
the loss term and Adam [53] as the optimizer, with a batch size
of 16 and a learning rate of 2� 10�4, which is halved every 100 k
steps. The entire SRDiff procedure takes approximately 28 h
(300 k steps) for training on CelebA, and 36 h (400 k steps) for
training on DIV2K, on 1 GeForce RTX 3090Ti with 24 GB of mem-
ory. The evaluation is also conducted on 1 GeForce RTX 3090Ti.

In addition to the well-known PSNR and SSIM evaluation met-
rics [54], we also evaluate our SRDiff on the LPIPS [55], LR-PSNR
[18] and pixel standard deviation r. The LPIPS was recently intro-
duced as a reference-based image quality evaluation metric that
computes the perceptual similarity between the ground truth
and the output SR image. The LR-PSNR is computed as the PSNR
between a downsampled SR image and an LR image, indicating
the consistency with the LR image. The pixel standard deviation
r indicates the diversity of the SR output, which is defined as

r ¼
Pi<N;j<M

i¼0;j¼0
Std I0i;j ;...;I

S
i;j

� 
� �
N�M , where N and M is the height and weight

of the image; S is the number of SR samples generated by one
method (we set S to 100 in our experiments); Std �ð Þ calculates

the standard deviation; and Iki;j denotes the pixel value (0 to 255)

located in i; jð Þ from the image sample Ik.

https://drive.google.com/drive/folders/0B7EVK8r0v71pWEZsZE9oNnFzTm8


Table 1
Results for the 8x SR of faces on CelebA. The 1st column indicates how the LR images degenerate from the HR images and Prog. denotes the progressive linear kernel from ProgFSR.
The 3rd column is the classification of each method. rmeans the pixel standard deviation. Speed is measured in terms of images/s (ips). The Parameters column shows the number
of parameters each model uses.

Methods Classification "PSNR "SSIM #LPIPS "LR-PSNR " r Speed Parameters

Bicubic Bicubic / 23.38 0.65 0.484 34.66 0.00 / /
RRDB PSNR-oriented 26.89 0.78 0.220 48.01 0.00 28.63 12.4 M
OISR PSNR-oriented 26.93 0.80 0.184 54.15 0.00 67.07 46.6 M

ESRGAN GAN-driven 23.24 0.66 0.115 39.91 0.00 28.12 12.4 M
SRFlow Flow-based 25.32 0.72 0.108 50.73 5.21 4.10 40.0 M
SRDiff Diffusion-based 25.38 0.74 0.106 52.34 6.13 1.23 12.0 M

Prog. ProgFSR GAN-driven 24.21 0.69 0.126 42.19 0.00 180.11 9.0 M
SRFlow Flow-based 25.28 0.72 0.109 51.15 5.32 4.12 40.0 M
SRDiff Diffusion-based 25.32 0.73 0.106 51.41 6.19 1.20 12.0 M

Fig. 4. Face SR (8�) visual results. SRDiff generates sharp images with richer details than RRDB, OISR and SRFlow, avoids the artifacts (e.g., grids on the women’s hair and
stripes on the first man’s head) encountered by ESRGAN and ProgFSR and maintains consistency with the ground truth.
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5.2. Performance

In this subsection, we evaluate SRDiff by comparing it with sev-
eral state-of-the-art SR methods on face SR (8�) and general SR
(4�) tasks. The detailed configurations of the baseline models
can be found in their original papers.

Face SR. We compare SRDiff with RRDB [17], OISR [56], ESRGAN
[17], ProgFSR [15] and SRFlow (s ¼ 0:8) [18]5. RRDB is trained with
only the L1 loss and can be regarded as a PSNR-oriented method. The
evaluation results are shown in Table 1, which reveals that SRDiff
outperforms previous works in terms of most of the evaluation met-
rics and can generate high-quality and diverse SR images with strong
LR consistency. Specifically, 1) as shown in Fig. 1, SRDiff provides
diverse and realistic SR predictions given only one LR input. Every
SR prediction is a complete portrait of a human face with rich details,
and it maintains consistency with the input LR image. 2) As shown in
Fig. 4, compared with the PSNR-oriented methods, SRDiff recon-
5 Due to patch size inconsistencies, we retrain all these baseline models from
scratch on our preprocessed CelebA dataset with released codes. SRFlow uses the
same patch size as that of our model, but we cannot obtain the same patch with its
released image example, and therefore, we also must retrain it.
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structs clearer textures. Compared with the GAN-driven methods,
SRDiff avoids artifacts, and the results look more natural. Moreover,
SRDiff uses fewer model parameters (12 M) than SRFlow (40 M) and
a comparable number of parameters to that of the other methods
listed in Table 1. SRDiff only takes 28 h until convergence, as
described in Section 5.1, while SRFlow needs about 4 days and ESR-
GAN needs about 3 days, which demonstrates that SRDiff is training-
efficient and can achieve comparable performance with a small
model footprint. This is because SRDiff does not impose any architec-
tural constraints to guarantee bijection. Compared with GAN-driven
methods, SRDiff does not need any extra modules (e.g., discrimina-
tor) for training. For inference speed, our method is slower than
other methods since we use a large T ¼ 100 to achieve good perfor-
mance. But when T decreases, the test speed increases (also means
the test time reduces). For example, when T ¼ 25, the testing speed
is 4.43 (images/s) on CelebA dataset, which outperforms SRFlow. We
illustrate this more specifically in Table 3 in Section 5.3. Though the
diffusion model is relatively slow in inference, it has great potential
to generate images much faster, according to recent works [57–59],
which focus on boosting the inference speed of diffusion models. We
will try to overcome the shortcomings of inference speed of SRDiff in
our future work.



Table 3
Ablations of SRDiff for face SR (8�) on CelebA. T , c and Res: denote the total number of diffusion steps, the channel size of the conditional noise predictor, and the residual
prediction, respectively. Speed is measured in terms of images/s (ips).

No. T c Res. "PSNR "SSIM #LPIPS "LR-PSNR Speed #Steps
1 100 64

p
25.38 0.74 0.106 52.34 1.20 300 k

2 25 64
p

25.12 0.71 0.109 52.17 4.43 300 k
3 200 64

p
25.41 0.74 0.106 52.31 0.56 300 k

4 1000 64
p

25.43 0.75 0.105 52.35 0.12 300 k
5 100 32

p
25.15 0.72 0.108 52.20 1.33 300 k

6 100 128
p

25.40 0.74 0.106 52.37 1.12 300 k
7 100 64 � 24.88 0.70 0.111 51.90 1.22 600 k

Table 2
Results for 4x SR of general images on DIV2K. The 2nd column is the classification of each method. rmeans the pixel standard deviation. Speed is measured in terms of images/s
(ips). The Parameters column shows the number of parameters each model uses.

Methods Classifications "PSNR "SSIM #LPIPS "LR-PSNR " r Speed Parameters

Bicubic / 26.70 0.77 0.409 38.70 0.00 / /
EDSR PSNR-oriented 28.98 0.83 0.270 54.89 0.00 0.52 43.1 M
OISR PSNR-oriented 28.95 0.84 0.252 55.72 0.00 0.42 44.3 M
RRDB PSNR-oriented 29.44 0.84 0.253 49.20 0.00 1.32 16.7 M

RankSRGAN GAN-driven 26.55 0.75 0.128 42.33 0.00 4.58 1.6 M
ESRGAN GAN-driven 26.22 0.75 0.124 39.03 0.00 1.29 16.7 M
SRFlow Flow-based 27.09 0.76 0.120 49.96 5.14 0.30 39.5 M
SRDiff Diffusion-based 27.41 0.79 0.136 55.21 6.09 0.04 12.4 M

Fig. 5. General SR (4�) visual results. SRDiff maintains more natural textures in rich details, e.g., animal fur and the background pine cone, than EDSR, RRDB, OISR and SRFlow.
SRDiff produces fewer unpleasant artifacts, e.g., speckles on the yellow grass, than ESRGAN and RankSRGAN. Only SRDiff maintains the brown streak on the yellow grass,
which is consistent with the ground truth.
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General SR. We also evaluate SRDiff on general SR (4�) tasks in
comparison with EDSR [7], RRDB [17], OISR [56], ESRGAN [17],
RankSRGAN [34] and SRFlow (s ¼ 0:9) [18] with their officially
released pre-trained models6. As shown in Table 2, SRDiff achieves
better quantitative results than those of the previous methods in
terms of most evaluation metrics (PSNR, SSIM and LR-PSNR) and
the comparable LPIPS, which reveals the effectiveness and great
potential of our method. Fig. 5 shows that SRDiff balances sharpness
and naturalness well and produces strong consistency with the LR
image. In contrast, the PSNR-oriented methods (EDSR, OISR and
RRDB) and SRFlow smear the edges of the objects, and the GAN-
driven methods (ESRGAN and RankSRGAN) introduce more artifacts.
In terms of the model footprints, SRDiff uses fewer model parame-
ters than most of the methods listed in Table 2.

The performances of our methods prove that SRDiff could solve
the over-smoothing problem in PSNR-oriented methods, mode col-
lapse problem in GAN-driven methods and large footprint issue in
flow-based methods:

� over-smoothing problem: We consider LPIPS as an evaluation
metric, since it has been shown to correlate much better with
human opinions [18]. Compared with methods listed in Table 1
and Table 2, our method obtains the lowest LPIPS on Face SR
tasks and relatively low LPIPS in General SR task. Consequently,
our method solves the over-smoothing problem with improved
perceptual quality.

� mode collapse problem: From pixel standard deviation r in
Table 1 (8th column) and Table 2 (7th column), we can see that
the diversity of each pixel in SRDiff is higher than that in GAN-
driven methods. This indicates that SRDiff could generate
diverse SR results and avoid the mode collapse problem.

� large footprint problem: In Table 1 and Table 2, the last col-
umn shows that our method uses less parameters than flow-
based methods and therefore solves the large footprint
problem.

5.3. Ablation Study

To probe the influences of the total number of diffusion steps T,
the channel size c of the conditional noise predictor and the effec-
tiveness of residual prediction, we conduct ablation studies, as
illustrated in Table 3. From rows 1, 2, 3 and 4, we can see that
the image quality is improved as the total number of diffusion
steps T increases, whil the testing speed decreases (also means
the testing time grows) as T increases. From rows 1, 5 and 6, we
can see that a larger model width results in better performance.
However, more total diffusion steps and a larger model width both
lead to slower inference. Therefore, we choose T ¼ 100 and c ¼ 64
as the default settings to achieve a trade-off. Rows 1 and 7 indicate
that residual prediction not only greatly improves the image qual-
ity but also speeds up the training process, which demonstrates the
effectiveness of residual prediction.
5.4. Extensions

In this subsection, we explore some extended applications,
including content fusion and latent space interpolation.

Content Fusion. SRDiff is applicable in content fusion tasks,
which aim to generate an image by fusing contents from two
source images, e.g., a source eye image and a source face image
that provide the eye and face contents, respectively. In this para-
graph, we use SRDiff to conduct face content fusion by a demon-
6 except RRDB, which is trained from scratch with the L1 loss used for the face SR
tasks.
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stration of fusing one’s eyes with another person’s face. The
procedure of content fusion is shown in Algorithm3. Firstly, we
directly fuse a face image xf by replacing the eye region of the
source face image xface with that of the source eye image xeye and
compute the differences between xf and the upsampled LR face
source image up xLð Þ to obtain the residual xr . Secondly, xr goes
through a �t-step diffusion process, which outputs x�t in latent space.
Then, x�t is denoised to an HR residual using the conditional noise
predictor iterated from �t to 0 with the LR source face information
encoded by the LR encoder, which ensures the compatibility of
the two contents. After this, we obtain a fused SR image by adding
the SR residual to up xLð Þ. Finally, we replace the eye region of the
Fig. 6. Extended applications of SRDiff.
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source face image with that of the SR face image and preserve the
non-manipulated face. As shown in Fig. 6a, we set different time-
steps t 2 30;50;70f g and find that the eye (including the eye-
brows) region of the fusion result is more similar to the source
eye image when t is small and is closer to the source face image
as t becomes larger.

Algorithm3: Content Fusion

1: Input: source eye image xeye, source face image xface,
number of diffusion steps �t.

2: Load: conditional noise predictor �h and LR encoder D.
3: Replace the eye region of xface with the that of xeye to form

the initial fused image xf
4: Upsample the LR source face image xL as up xLð Þ
5: Compute xr ¼ xf � up xLð Þ
6: Put xr into the diffusion process and compute

x�t xr ; �ð Þ ¼ ffiffiffiffiffi
�a�t

p
xr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �a�t

p
�; � � N 0; Ið Þ

7: Encode xL as xe ¼ D xLð Þ
8: for t ¼ �t; � � � ;1 do
9: Sample z � N 0; Ið Þ if t > 1, else z ¼ 0

10: Compute xt�1 ¼ 1ffiffiffiffi
at

p xt � 1�atffiffiffiffiffiffiffiffi
1��at

p �h xt ; xe; tð Þ

 �

þ rt xt ; tð Þz
11: end for
12: Compute the SR face prediction xH ¼ x0 þ up xLð Þ
13: Crop the eye region of xH and insert it into the

corresponding eye region of xface to generate xfused
14: return xfused as the content fusion result

Latent Space Interpolation. Given an LR image, SRDiff can manip-
ulate its prediction by latent space interpolation, which linearly
interpolates the latent variables of two SR predictions and gener-
ates a new prediction. Let x�t ; x0�t � q x�t jx0ð Þ; we decode the latent
variable �x�t ¼ kx�t þ 1� kð Þx0�t by the reverse process, which feeds
�x�t into the noise predictor with the LR information iteratively
encoded by the LR encoder. Then, we add the output residual result
to up xLð Þ to obtain the interpolated SR prediction. We set �t ¼ 50
and k 2 0:0;0:4;0:8;1:0f g. Fig. 6b shows that as k approaches 1.0,
the woman’s expression becomes closer to xt , which is the top right
image exhibiting a large laugh. In the same way, the man’s mouth
Fig. 7. Enlarged ve
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becomes wider as k ¼ 0:0 shifts to k ¼ 1:0. The trend of the inter-
polated images show the effectiveness of SRDiff in latent space
interpolation. The detailed algorithm of latent space interpolation
is shown in Algorithm4.

Algorithm4: Latent Space Interpolation

1: Input: LR image xL, number of diffusion steps �t, k 2 0;1½ �
2: Load: conditional noise predictor �h and LR encoder D
3: Sample x�t; x�t 0 � N 0; Ið Þ
4: Compute �xt ¼ kx�t þ 1� kð Þx�t 0
5: Upsample xL as up xLð Þ
6: Encode xL as xe ¼ D xLð Þ
7: for t ¼ �t; � � � ;1 do
8: Sample z � N 0; Ið Þ if t > 1, else z ¼ 0

9: Compute xt�1 ¼ 1ffiffiffiffi
at

p xt � 1�atffiffiffiffiffiffiffiffi
1��at

p �h �xt ; xe; tð Þ

 �

þ rt xt ; tð Þz
10: end for
11: return the interpolated SR face prediction

xH ¼ x0 þ up xLð Þ as the latent interpolation results
6. Conclusion

In this paper, we proposed SRDiff, which is the first diffusion-
based model for SISR to the best of our knowledge.Our work firstly
exploited a Markov chain to convert HR images into latent vari-
ables in simple distributions. And then we conducted the reverse
process that generates the SR predictions by iteratively denoising
the latent variables using a noise predictor conditioned on LR infor-
mation. To speed up the convergence process and stabilize the
training procedure, SRDiff introduces residual prediction. Our
extensive experiments on both face and general datasets demon-
strated that SRDiff can generate diverse and realistic SR images.
Moreover, both the theory and the performances show that our
method is capable of solving the over-smoothing, mode collapse
and large footprint issues that occur in PSNR-oriented methods,
GAN-driven methods and flow-based methods, respectively. In
addition, SRDiff allows for flexible image manipulation, including
latent space interpolation and content fusion. The diverse SR
results generated by our method can provide more references for
rsion of Fig. 3.



H. Li, Y. Yang, M. Chang et al. Neurocomputing 479 (2022) 47–59
the user to select according to their demands. Our method sheds
much light on potential new research directions.

In the future, we will further improve the performance of the
developed diffusion-based SISR model and speed up the inference
process. We will also extend our work to more image restoration
tasks (e.g., image denoising, deblurring and dehazing) to verify
the potential of diffusion models in the image restoration domain.
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Appendix A. The Definition of bt

To define the variable bt , following [52], we define

bt ¼ 1� �at

�at�1
; �at ¼ f tð Þ

f 0ð Þ ; f tð Þ ¼ cos
t=T þ s
1þ s

� p
2


 �2

; s ¼ 0:008:

In practice, we clip bt to be smaller than 0.99 to prevent singu-
larities at the end of the diffusion process near t ¼ T .

Appendix B. The Enlarged Fig. 3

We enlarge Fig. 3 and place it in Fig. 7.

Appendix C. The Deduction of Eq. (9)

For the deduction of Eq. (9), we further reparameterize 2 as
xt x0; �ð Þ ¼ ffiffiffiffiffi

�at
p

x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
� for � � N 0; Ið Þ and applying the for-

ward process posterior formula:

Lt�1 �C ¼ Ex0 ;�
1

2r2
t

~lt xt x0; �ð Þ; 1ffiffiffiffiffi
�at

p xt x0; �ð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
�

� �
 �����
�

�lh xt x0; �ð Þ; tð Þ��2
i

¼ Ex0 ;�
1

2r2
t

1ffiffiffiffiffi
at

p xt x0; �ð Þ� btffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p �

 �

�lh xt x0; �ð Þ; tð Þ
����

����2
" #

;

Given xt ;lr could predict 1ffiffiffiffi
at

p xt � btffiffiffiffiffiffiffiffi
1��at

p �

 �

. Because xt is the

input of the model, we could parameterize lr as

lh xt; tð Þ ¼ ~lt xt ;
1ffiffiffiffiffi
�at

p xt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
�h xtð Þ

� �
 �

¼ 1ffiffiffiffiffi
at

p xt � btffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p �h xt; tð Þ

 �

;

This equation could be rewritten as:
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Ex0 ;�
b2
t

2r2
t at 1� �atð Þ �� �h

ffiffiffiffiffi
�at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
�; t

� ���� ���2
" #

:

For easier training of the variational bound, we minimize the
variant of the ELBO with x0 and t as inputs:

min
h

Lt�1 hð Þ ¼ Ex0 ;�;t k�� �h
ffiffiffiffiffi
�at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
�; t

� �
k2

h i
:
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