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Abstract

To meet the space limitation of optical elements, free-
form surfaces or high-order aspherical lenses are adopted
in mobile cameras to compress volume. However, the appli-
cation of free-form surfaces also introduces the problem of
image quality mutation. Existing model-based deconvolu-
tion methods are inefficient in dealing with the degradation
that shows a wide range of spatial variants over regions.
And the deep learning techniques in low-level and physics-
based vision suffer from a lack of accurate data. To address
this issue, we develop a degradation framework to estimate
the spatially variant point spread functions (PSFs) of mo-
bile cameras. When input extreme-quality digital images,
the proposed framework generates degraded images shar-
ing a common domain with real-world photographs. Sup-
plied with the synthetic image pairs, we design a Field-Of-
View shared kernel prediction network (FOV-KPN) to per-
form spatial-adaptive reconstruction on real degraded pho-
tos. Extensive experiments demonstrate that the proposed
approach achieves extreme-quality computational imaging
and outperforms the state-of-the-art methods. Furthermore,
we illustrate that our technique can be integrated into ex-
isting postprocessing systems, resulting in significantly im-
proved visual quality.

1. Introduction
Combined with powerful hardware and manual-made

image signal processing (ISP) systems, mobile cameras

have achieved great success. Recently, smartphones have

become the primary source of photographs, and the pursuit

of better imaging results has increased even more. However,

to meet the space limitation of lenses, high-order aspherical

lenses or free-form surfaces are applied in mobile cameras.

Most of them aim to compress the volume of wide-angle

lenses [17], but in the meanwhile, they also introduce the

problem of image quality mutation (as shown in Fig. 2).

Recent cameras have shifted some of these correction

tasks from lens design to ISP systems to correct this abrupt

(a) Image captured by HUAWEI HONOR 20

(b) Degraded

(c) HUAWEI ISP

(g) DF + FOV-KPN(d) ZMX+ FOV-KPN (e) DF + SelfDeblur (f) DF + KPN

Figure 1. The reconstructions of a real-world image (a) captured

by HUAWEI HONOR 20. (b) is the primary degradation, (c) is the

output of HUAWEI ISP. Results of the proposed FOV-KPN model

trained using image pairs simulated by (d) Zemax� (ZMX). (e),

(f), and (g) are the restorations of SelfDeblur [39], KPN [31], and

FOV-KPN model (Ours), respectively, all of them trained on the

data generated by our degradation framework (DF).

degradation. However, different steps of the traditional ISP

are independent of each other, where errors accumulate and

magnify in the following steps. So for the postprocessing

pipeline, how to accurately estimate the abrupt degradation

and correct it are the keys to reconstruction.

One approach is to estimate the camera intrinsic degra-

dation kernel through iterative optimization [33]. However,

for the PSFs that show a wide range of spatial variation

over regions, optimization methods have difficulty converg-

ing. The other way is reconstructing the degraded image

with deep learning method [20], which depends heavily on

the accuracy of data pairs. Moreover, because the degrada-

tion of diverse cameras is different, it is urgent to develop

feasible and convenient approaches to generate the train-

ing data designed for each camera. In [37], the researchers
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Checkerboards Image quality mutation region

Figure 2. Image quality mutation of the mobile camera. One can

see that in the magnified region (right), the two sides separated by

the dotted line have a significant difference in blurring.

put forward an indoor method of automatic image captur-

ing. However, sophisticated operations, including registra-

tion, color calibration, distortion correction, are required to

post-process the captured images. These operations mod-

ify the degradation of raw data. Therefore, the challenges

of degradation correction lie in two aspects. On the one
hand, we need targeted methods to simulate accurate de-

graded data of diverse cameras. On the other hand, there

is not exist a spatial-adaptive reconstruction technique that

can integrate into existing post-processing systems.

In this work, we propose a robust degradation frame-

work for estimating spatially variant kernels from real pho-

tographs. And the framework generates accurate imaging

results of diverse cameras. As shown in Fig. 1(d) and 1(g),

accuracy of simulation has a great impact on restoration.

In the meanwhile, based on the kernel prediction network

(KPN) [7], we propose a Field-Of-View (FOV) shared net-

work architecture aiming at performing spatial-adaptive re-

covery on degraded images. Different from KPN, the pre-

dicted kernel output results in a dilated convolution manner.

The dilated way increases the influence scope with a rela-

tively lower computational overhead. The rest of the net-

work is divided into the FOV encoder and the Deformable

Decoder. They aim to enhance the spatial adaptability of

the model. Fig. 1(e)∼1(g) show the reconstructions of the

state-of-the-art methods and FOV-KPN. Our approach gen-

erates more vivid results than the compared methods.

The contributions of our work are as follows:

• A semi-supervised degradation framework is proposed

to estimate spatially variant kernels from real pho-

tographs and generate realistic imaging results of a

specific camera.

• We propose a spatial-adaptive network architecture to

correct spatially variant degradation, and it can inte-

grate into existing post-processing systems.

We conduct extensive experiments to analyze the perfor-

mance of the proposed degradation framework and network

architecture. Moreover, we prove that the proposed solu-

tion can replace the traditional ISP in practical scenarios,

resulting in significantly improved image quality.

2. Related Work
Degradation Estimation. To calculate the degradation

kernel of imaging procedure, scholars have put forward

many constructive proposals, which can be divided into

two categories. One is the optimization-based deconvolu-

tion method [36, 34, 35], which has a great performance

in dealing with spatially consistent degradation. However,

when applied to real images, these methods have difficulty

in converging under low signal to noise ratio (SNR) con-

dition [33, 21]. The other category is to estimate PSFs by

deep linear network. It is first proposed by [3, 22], where an

internel-gan is used to predict super-resolution kernel. Due

to its unsupervised training procedure, the predicted ker-

nels are unstable in application [29]. Therefore, compared

to the deconvolution methods, the deep learning approaches

can converge in extreme cases, but they need stronger con-

straints to predict the degradation kernel accurately.

ISP Pipeline. Because of the differences between hu-

man eyes sensitivity and sensor response, ISP systems post-

process the raw data received by hardware to generate pho-

tographs adapted to human vision [41]. However, the tra-

ditional ISP systems in modern imaging devices are step-

by-step operations [27, 5, 6, 26, 18], where errors of each

step will accumulate and amplify in the following discrete

steps. Due to the popularity of the end-to-end deep learn-

ing method, many researchers focus on substituting the tra-

ditional ISP systems with a trained deep learning model

[2, 38]. In the previous works [19, 10, 37], data acquisition

is an essential issue, where a lot of shooting, registration,

and color correction is needed to generate proper data pairs

for training. Moreover, when migrates to a new device, the

data set needs to be collected again [7]. The work of rec-

ollection is time-consuming and requires a lot of manual

costs. Therefore, it is urgent to design a targeted method for

simulating the degradation of the imaging procedure.

Image Reconstruction. Single image reconstruction

has been the focus of a significant body of researches in

computer vision, image processing [53, 50, 49]. Most clas-

sic reconstruction works suppose that the degradation can

be modeled by convolution [16]. In this way, they propose

model-based deconvolution methods to restore the data gen-

erated by degraded kernel [47, 36]. However, because these

approaches need to adjust parameters according to the ac-

tual situation, they can not be applied to real-time scenes.

Recently, deep learning is becoming the most popular tech-

nology in image reconstruction [9], and many approaches

combine the optimization schemes and CNNs [51, 12].

Nevertheless, the methods mentioned above are all pro-
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posed to deal with globally consistent blur. Considering

that the degradation in natural images is spatially variant

[42, 24], we note that the KPN architecture is customized

for solving this problem. KPN is first proposed in [31], and

it has been proved to have better stability than direct predic-

tion [44]. Nevertheless, KPN is not effective in dealing with

severe degradation because computational overhead will in-

crease if the predicted kernel grows larger [13]. Our work

proposes an efficient way to integrate the spatial informa-

tion and recover the spatially variant degradation adaptively.

3. Natural Images Degradation
In this section, we focus on the proposed degradation

framework. First, we analyze the degradation of natural

images in Section 3.1. Second, the proposed degradation

framework is detailed in Section 3.2. And in Section 3.3,

we illustrate the optical geometric priors, aiming at carry-

ing out an accurate estimation for different FOVs.

3.1. Realistic Degradation in Imaging Pipeline

The pipeline of the image formation model is divided

into two stages. The first stage is to record light intensity

information via optics and a sensor. The second stage is to

post-process the measurements, known as the ISP systems.

In the first stage, the degradation of light energy can be

formulated as the following equation:

Ie(x, y) =

∫
Re(λ) · [p(x, y, d, λ) ∗ ie(x, y)]dλ+ n(x, y),

(1)

Here Ie(x, y) and ie(x, y) are the degradated measurement

and the latent image, respectively. We emphasize that both

Ie(x, y) and ie(x, y) represent the energy intensity received

by sensor. Re(λ) is the response distribution of sensor.

n(x, y) can be approximated as a single heteroscedastic

Gaussian, we refer readers to [14] for more details. And

the degraded PSF p(x, y, d, λ) can be expressed as:

p(x, y, d, λ) = po(x, y, d, λ) ∗ pc(λ), (2)

po(x, y, d, λ) is the PSF of optical lenses. It varies with

the spatial coordinates (x, y) of sensor plane, the shooting

distance d, and the wavelength λ. pc(λ) is the PSF of sensor

crosstalk, which just depends on the wavelength λ of input

signal (well described in [45]).

In the second stage, ISP systems are conducted to the en-

ergy measurements Ie(x, y) (the detail of each step in ISP

is in [4]). We note that the steps cascaded down the ISP

are independent of each other, where a slight error of each

operation will magnify in the following steps. The solution

to this problem can be obtained if only the data pairs are

constructed end-to-end from degraded domain to latent do-

main. In this way, the error accumulated in ISP systems can

eliminate with a deep learning model. Therefore, we firstly

construct an authentic degradation framework based on the

image formation pipeline. The detail of the framework will

illustrate in the following section.

3.2. Degradation Framework

As shown in Fig. 3, the proposed degradation framework

is mainly divided into two stages.

Stage I The first stage is to construct data pairs for degra-

dation estimation. Assuming the blur and the noise level of

real checkers are similar in some neighborhoods, we pick

out the degraded label Y in the checkers taken by a spe-

cific camera. Then the structure Ys can be easily obtained

by edge detection algorithms. The pixel value of edges in

the degraded input X will be interpolated in coloring to pre-

vent discontinuous solutions at the boundary of data pairs.

In this way, we preprocess Y to acquire the training pairs

{x, y}. Furthermore, we transmit the normalized FOV and

the ISP parameters (including white balance, CCM, and

gamma value) to the second stage.

Stage II As analysed in Section 3.1, only the degradation

in energy domain can be modeled as convolution. There-

fore, we incorporate the ISP pipeline into the training pro-

cedure of degradation transfer. By using the ISP parameters

transmitted from stage I, we convert extreme-quality images

to raw-like data for training (the pipelines of unprocess and

process are in Fig. 4). We must emphasize is that, in train-

ing, the ISP parameters follow the data of real checkers,

but in the test, these parameters vary with a random color

temperature. And the λread and the λshot in noise injection

are determined by the camera measurements for a particular

exposure (see [4] for more details).

Inspired by KernelGAN [3], we adopt deep linear model
to perform the mapping of {xl, x

d
l } in energy domain. How-

ever, we discovered that the unsupervised way used in

[3] is unstable in implementation. Hence, a novel semi-

supervised manner is applied to train the degradation trans-

fer, which significantly enhances the training stability. Un-

fortunately, because the degradation shows a wide range of

spatial variation over regions, the PSFs of different FOVs

cannot be accurately estimated by the degradation trans-

fer with fixed hyperparameters. Therefore, it is signifi-

cant to carry out specific training for different FOVs. To

achieve this goal, we introduce the optical geometric priors

for degradation transfers. They will illustrate in the follow-

ing section.

3.3. Optical Geometric Priors

We design the optical geometric priors to carry out an

accurate estimation. We devide them into two aspects: (1)

constraint of PSFs size and shape, (2) symmetry constraint.

Shape constraint For each lens in modern camera, Strehl

Ratio [30] indicates the energy diffusion of it. Given the
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Figure 3. Overview of the degradation framework. In stage I, backward transfer constructs the data pairs for the training procedure of

degradation transfer. And in stage II, each degradation transfer is tailored to one FOV, aiming at estimating the spatially variant PSFs of

different FOVs and generating realistic imaging results.
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Gamma
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Figure 4. Unprocess and Process Pipeline. See Section 3.2 and

[4] for details.

sensor pixel size, lenses airy disk, and Strehl Ratio, it is

easy to derive the approximate PSF sizes of different FOVs.

In this way, we construct a relationship between the Strehl

Ratio and the receptive field of degradation transfer. To be

more specific, the number of convolution layers in deep lin-
ear model will change according to the PSF size (detailed in

the supplementary file). Moreover, the whole framework

needs to meet following constraints:

L = αLfidelity + βLsum2one + γLboundary, (3)

here α, β, γ are the weight coefficients of different loss

functions. Lfidelity = ||xd − y||1 supervises the fidelity

of the degraded result xd. Lsum2one = |1 − ∑
ki,j | and

Lboundary =
∑

i,j |ki,j ·mi,j | are the same in [3] (i, j is the

2D Cartesian coordinate of PSF k). γ is used to penalize the

non-zero values close to the boundaries of k, so γ will be

lower by the decrease of Strehl Ratio. In this way, specific

training strategy according to the shape of PSF is designed.

Symmetry constraint For each off-axis pixel, there is a

corresponding pixel that is central symmetric to it [48]. So

the local PSF k and its symmetric one ksym can be con-

strained with a general rotating constraint:

Lsym =
∑
i,j

(k(i, j)− 1

2
(k(i, j) + ksym(−i,−j)))2, (4)

Here (i, j) is the 2D Cartesian coordinate of PSF. In this

way, we force each PSF to be similar to its central symmetry

counterpart. The overall constraints as follows:

L = αLfidelity+βLsum2one+γLboundary+δLsym, (5)

In summary, we design the optical geometric priors to carry

out specific training for different FOVs: one prior is to con-

strain the size of degradation the other prior is to constrain

the central symmetry of deterioration. Our priors directly

derive from the optical parameters of a camera. The train-

ing procedures of the degradation transfer illustrate in Algo-

rithm 1, where the subscript sym indicate the form of cen-

tral symmetric. After training the degradation transfers D of

different FOVs, the framework generates realistic imaging

results as follows. Each FOV patch of a digital image IGT

is input into the corresponding D, and all the outputs join

together to get IDE . Although trained on the real checker-

boards taken by a camera, the framework can generalize the
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different colored blocks (bottom left). The FOV Block, Deformable ResBlock, and KPN Block are detailed in the bottom right corner.

Algorithm 1: Training of Degradation Transfer

Input: data-pair {x, y} and {x, y}sym
Output: trained Degradation Transfer D and Dsym

1 Initialize Degradation Transfer D and Dsym

according to the corresponding Strehl Ratio;

2 for t = 1 to T do
3 xd = process(D(unprocess(x)));

4 xd
sym = process(Dsym(unprocess(xsym)));

5 Calculate k and ksym following [3];

6 Calculate L(xd, y, k, ksym) using Eq.5;

7 Calculate Lsym(xd
sym, ysym, ksym, k) using

Eq.5;

8 Compute the gradient w.r.t. D and Dsym;

9 Update the weight of D and Dsym;

10 end
11 Output the trained D and Dsym;

estimated deterioration to natural images. It is due to the

powerful generalization capability of the deep linear model
(detailed in [3]). In this way, we prepare the data pairs

{IDE , IGT } ∈ {xd, x} for extreme-quality computational

imaging, where the mapping from IGT to IDE covers all

authentic deteriorations in image formation.

4. Image Reconstruction Model

An end-to-end reconstruction model is implemented to

realize extreme-quality computational imaging. It takes de-

graded sRGB images IDE as input and output reconstructed

images in the same domain [1]. The architecture of the pro-

posed model is shown in Fig. 5, which can be divided into

three parts: FOV Encoder (Section 4.1), Deformable De-

coder (Section 4.2), and KPN Block (Section 4.3).

4.1. FOV Encoder

Due to the strong correlation between degradation and

spatial information, we propose the FOV Attention Block

to integrate spatial features. It calculates spatial attention

masks from pixel coordinate matrices [11], then the image

features are modulated by the masking through element-

wise multiplication and addition (as shown in the bottom

right of Fig. 5). Moreover, ResBlocks [15] are applied in

each scale to enhance the expression ability.

4.2. Deformable Decoder

Owing to the irregular shapes and sizes of spatially vari-

ant PSFs, conventional convolution layers are not efficient

in solving these degradations. Because it only takes features

from fixed positions and output results. To deal with singu-

larly shaped PSFs, we introduce deformable convolution to

calculate information more flexibly. Following the works

proposed by [46, 8], Deformable ResBlocks are employed

in each scale of the decoder (as shown in the bottom right

of Fig. 5).

4.3. KPN Block

In [44], scholars have proved that kernel prediction is

more stable than direct prediction and can handle spatially
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variant degradation. However, the computation overhead

of KPN will increase heavily when the kernel size grows

larger. Therefore, we adopt a dilated convolution manner to

output the restoration [28] (as shown in the bottom right of

Fig. 5). This operation enlarges the influence scope of the

predicted kernel with a relatively lower amount of compu-

tation.

Because {IDE , IGT } are pixel-aligned, extreme-quality

results can be obtained only with pixel-level fidelity loss.

Moreover, we note that perceptual metric [23] will generate

authentic results when dealing with natural images. There-

fore, the overall combination of the loss function is as fol-

lows:

Ltotal = λmse · Lmse + λper · Lper, (6)

Where λmse and λper are set as 0.1 and 1 empirically.

5. Experiments
To evaluate the proposed technique, we carry out a com-

prehensive set of experiments aiming at answering the fol-

lowing three questions:

• What are the advantages of our degradation framework

over the model-based kernel estimation approach?

• Is the proposed solution superior to the state-of-the-art

methods when applied to solve degradation?

• How good is the extreme-quality computational imag-

ing compared to the built-in ISP system?

5.1. Advantages of Degradation Framework

The performance of our degradation framework is ana-

lyzed in two ways: Degradation estimation accuracy and

Reconstruction performance. To evaluate the accuracy of

the degradation estimation, the model-based deconvolution

method [33] and the calibration approach [21] are chosen

for comparing. We apply the real estimated kernels of dif-

ferent methods to checkerboards, and imatest� is used to

calculate MTF from the degraded checker. As shown in Fig.

6, we plot the MTF50 vs. FOV curves, where the size of

circles indicates the SNR of the corresponding FOV. The

proposed framework accurately simulates the mutational

degradation of different FOVs, and it is robust to noise. Yet,

the accuracy of other approaches will be significantly af-

fected by the SNR of the estimated region.

To evaluate the reconstruction performance, we calcu-

late the theoretical PSFs of the experimental camera by

Zemax� and applied these PSFs to checkerboards by parti-

tion convolution. We use the method in [33] and our frame-

work to estimate PSFs on the corrupted checkerboards. The

results show in Fig. 7. SSIMs between the estimated kernel

and the ground-truth, are noted in the bottom right of each

PSF. The visual comparison of PSFs validates the accuracy
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Figure 6. Degradation MTF comparison. The MTF50 vs. FOV

curves of different compared methods are plotted: Jemec [21],

Mosleh [33], and Ours. The MTF50 of the experimental camera

is calculated by imatest� for reference. And the size of purple
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Figure 7. Kernel estimation and Reconstruction. The PSFs are

arranged from left to right according to the corresponding FOV.

We use Zemax� to calculate the ground truth PSFs. And these

PSFs are used to corrupt checkerboards. The following PSFs are

estimated by [33] and our method when supplied with the cor-

rupted checkerboards. We note the SSIMs of estimations in the

bottom right of each PSF.

of the framework, and the SSIMs emphasize the authentic

reconstruction performance of our method.

In summary, the proposed degradation framework has

two advantages compared with other approaches: (1) adapt

to image quality mutation and robust to noise. (2) authen-

tic data generation designed for better deep learning recon-

struction. We refer readers to the supplementary file for

the generalizing capability of our framework.

5.2. Testing on Synthetic Images

To demonstrate the advantages of the proposed method,

our technique is compared with many advanced deblur

methods, including SRN [43], DeblurGan-V2 (GAN) [25],

IRCNN [51], GLRA [40], SelfDeblur [39], KPN [31], and

LP-KPN [7]. The training/test dataset consists of 600/50

ground-truth images selected from DIV2K (the degraded

images are generated by the proposed Degradation Frame-

work). We retrain all the models with the same data, and
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Table 1. Performance of the proposed model and its ablation study on synthetic data
Method PSNR↑ SSIM↑ NIQE↓ LPIPS↓ Times (ms)

SRN 34.27 (17.4%) 0.9602 (19.3%) 2.8917 (31.7%) 0.3386 (63.9%) 102.4

DeblurGAN-v2 32.79 (30.3%) 0.9566 (23.1%) 3.3814 (41.6%) 0.2458 (50.2%) 52.8

IRCNN 34.14 (18.6%) 0.9679 (11.2%) 2.6578 (25.7%) 0.3043 (59.8%) 194.1

GLRA 34.53 (14.9%) 0.9663 (12.8%) 3.2675 (39.5%) 0.3156 (61.2%) 246.6

SelfDeblur 34.96 (10.6%) 0.9709 (8.0%) 3.0735 (35.7%) 0.2707 (54.8%) 264.9

KPN, k = 19 35.62 (3.5%) 0.9762 (2.6%) 1.9759 (0.0%) 0.1448 (15.5%) 70.4

LP-KPN 35.58 (3.9%) 0.9764 (2.4%) 2.0929 (5.6%) 0.1410 (13.3%) 53.6

Ours 35.93 (0.0%) 0.9787 (0.0%) 2.0578 (4.0%) 0.1223 (0.0%) 47.4

Ablation study
Degradation Kernel 33.52 (24.2%) 0.9641 (15.1%) 3.5102 (43.7%) 0.2749 (55.5%) 47.4

Unprocess and Process 35.11 (9.0%) 0.9697 (9.3%) 3.0493 (35.2%) 0.1647 (25.7%) 45.6

Optical Geometric Priors 33.96 (20.3%) 0.9649 (14.3%) 3.3727 (41.4%) 0.2285 (46.5%) 47.4

FOV Encoder 34.69 (13.3%) 0.9684 (10.6%) 3.0684 (35.6%) 0.1622 (24.6%) 36.2

Deformable Decoder 35.34 (6.6%) 0.9769 (1.8%) 2.2928 (13.8%) 0.1245 (1.8%) 44.6

KPN Block 35.26 (7.4%) 0.9743 (4.5%) 2.3059 (14.3%) 0.1301 (6.0%) 45.4

Image captured by HUAWEI HONOR 20 Degradation SRN SelfDeblur KPN Ours

1

2
1

2

1

2
1

2

Figure 8. Real image restoration. The results of different methods magnify in the right and the positions highlight on the left.

the deconvolution methods are optimized ten times (time

comparison on 500×500 color images). The PSNR, SSIM,

NIQE [32], and LPIPS [52] indices of these methods are

listed in Table 1. One can notice that the combination

methods of model-based deconvolution schemes and CNNs

(i.e. IRCNN, GLRA, SelfDeblur) are overall better than

the direct pixel synthesis networks (i.e., SRN, DeblurGan-

v2) when tested on synthetic data. However, optical degra-

dation is spatially variant and highly correlate with spatial

information. These methods, aiming at solving globally

consistent blur, cannot obtain extreme-quality performances

in correcting optical degradation. Moreover, we note that

KPN and LP-KPN are designed to deal with spatially vari-

ant degradation, and they perform better in NIQE. How-

ever, directly increasing the kernel size will quadratically

aggravate the computational overhead. Utilizing the dilated

convolution strategy, our FOV-KPN enlarges the influence

scope of the predicted kernel with a relatively small size and

low time cost (detailed in the supplementary file). And

benefiting from the FOV encoder, our method engages the

spatial information and obtains better performance than the

state-of-the-art methods.
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5.3. Evaluation on Real Photographs

In Fig. 8, we visualize the blur-resolved images. We

show two patches of each image, aiming at evaluating the

performance of different methods in solving spatially vari-

ant blur. As can be seen, the techniques designed for glob-

ally consistent degradation tend to generate the compromise

of severe blur (edge) and mild degradation (center). The

KPN architecture achieves perfect restoration in the cen-

ter, but it is not effective in dealing with the severe blur

in the edge due to the limitation of kernel size. On the

contrary, the proposed spatial-adaptive model successfully

deals with the deteriorations, resulting in extreme-quality

enhancement. More real-world photographs and their quan-

titative evaluation are shown in the supplementary file.

5.4. Ablation Study

In this section, we perform an ablation study on our

method to further verify the necessity of each step. The

setting of each evaluation is as follows: Degradation Ker-
nel indicates that the degradation kernels are replaced by

the PSFs calculated by Zemax�. Unprocess and Process
indicates that the unprocess and process operations are re-

moved in the degradation framework. Optical Geometric
Priors indicates that the receptive field of deep linear net-
work is fixed, and symmetry constraint is abandoned. FOV
Encoder, Deformable Decoder, and KPN Block indicate

that these modules are replaced by convolution layers.

As shown in Table 1, apart from the optical aberrations

of lenses, there are manufacturing error, electron diffusion,

and aperture restriction that will deteriorate the image qual-

ity. Moreover, the unprocess and process operations are

crucial because the degradation can be modeled by convo-

lution only in the energy domain. When the optical geomet-

ric priors are not applied to the degradation framework, the

estimation process is unstable. We conduct a detailed dis-

cussion on the optical geometric priors and show it in the

supplementary file. As for network architecture, the FOV

Encoder is an efficient way to utilize spatial information.

The Deformable Decoder and the KPN Block effectively

deal with spatially variant degradation.

5.5. Applications

Our ultimate goal is to replace the existing hand-made

ISP system with the proposed post-processing pipeline

(including dark level subtraction, demosaic, white bal-

ance, color correction, gamma compression, and recon-

struction), achieving extreme-quality computational imag-

ing. Therefore, we further present the comparison between

our method and HUAWEI ISP in Fig. 9, both of them per-

form RAW-to-RGB translation. We apply the same JPEG

compression algorithm for the sake of a fair comparison.

Owing to the additional sharpening operation, the image

post-processed by HUAWEI ISP is excellent in the center

of photograph, and our result obtains the same recovery as

the built-in ISP. However, sharpening is globally consis-

tent. The advantage of our method is evident when FOV

increases. According to the spatial information in off-axis

regions, the proposed pipeline recovers the degraded image

adaptively, especially in the edge. We refer readers to the

supplementary file for more comparisons concerning time

costs and restoration examples.

6. Conclusion

In this paper, we constructed a degradation framework

for estimating the spatially variant PSF of a specific cam-

era, including but not limited to the device that shows

image quality mutation. The proposed framework gener-

ates authentic imaging results that resemble real-world pho-

tographs, where a lot of shooting, registration, and color

correction are needless. Then a KPN-based network archi-

tecture was designed, aiming at dealing with spatially vari-

ant degradation. Our comprehensive experiments validate

the advantages of our degradation framework when com-

pared with the model-based deconvolution methods. More-

over, we demonstrate that the proposed network is superior

to the state-of-the-art approaches in dealing with spatially

varying blur. Furthermore, the proposed method can be em-

bedded in existing ISP systems, resulting in extreme-quality

computational imaging. We hope this work could inspire

further research in real-world image reconstruction.
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