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Dynamic distortion is one of the most critical factors affecting the experience of automotive augmented real-
ity head-up displays (AR-HUDs). A wide range of views and the extensive display area result in extraordinarily
complex distortions. Existing methods based on the neural network first obtain distorted images and then get
the predistorted data for training mostly. This paper proposes a distortion prediction framework based on the
neural network. It directly trains the network with the distorted data, realizing dynamic adaptation for AR-HUD
distortion correction and avoiding errors in coordinate interpolation. Additionally, we predict the distortion off-
sets instead of the distortion coordinates and present a field of view (FOV)-weighted loss function based on the
spatial-variance characteristic to further improve the prediction accuracy of distortion. Experiments show that
our methods improve the prediction accuracy of AR-HUD dynamic distortion without increasing the network
complexity or data processing overhead. ©2023Optica PublishingGroup

https://doi.org/10.1364/AO.492602

1. INTRODUCTION

The on-vehicle augmented reality head-up display (AR-HUD)
system uses the optical system to project the input image onto
the car’s front windshield, forming a virtual image at a certain
distance in front of the vehicle, and the driver obtains enhanced
information by observing the projected image [1,2]. However,
this process undergoes a complicated optical conversion of the
image and the non-standard shape of the front windshield.
The displayed image will have spatial position offsets and
severe distortion, making the virtual image different from the
original image, as shown in Fig. 1(a). It is necessary to calibrate
and predistort the projected image so that the observed image
is consistent with the original one, as shown in Fig. 1(b). At
present, the existing technologies used in automobiles select
the best observation position as a fixed observation point and
only calibrate the projected image of the fixed viewpoint [3–5].
However, since the position of the driver’s or passenger’s view-
point changes dynamically, the projected image corrected by a
fixed position may appear distorted, which cannot fully meet
the experience needs of the viewer.

There are some studies on AR-HUD distortion correction for
dynamic viewpoint.

A. Traditional Dynamic Distortion Correction

Wientapper et al . [6] proposed dynamic distortion correction
for vehicle AR-HUD system. They estimated the projective

transformation from the world to the calibration camera and
compensated the optical distortion by introducing a fifth-degree
polynomial model. However, it is limited to a small display
area, and the calibration process involves complex components.
Ueno and Komuro [7] raised another calibration method based
on multi-view. They created a conversion map from a calibrated
camera image to the virtual image for each viewpoint. Then
they employed linear regression to create a lookup table (LUT)
for different viewpoints. Deng et al . [8] implemented the AR-
HUD calibration using mixed reality glasses. They sampled
hundreds of viewpoints and applied nonlinear regression to
estimation coefficients. Like [7], Gao et al . [9–12] also used
LUT to record the predistortion mapping table of calibrated
viewpoints, obtaining the map of any viewpoint by LUT inter-
polation. However, these methods require a large amount of
data to form a LUT or estimate regression coefficients, which
has specific requirements for system storage, especially with the
improvement of image resolution and precision requirements.
At the same time, linear interpolation may cause image hopping
[13], negatively impacting the user experience.

B. Dynamic Distortion Correction Based on Deep
Learning

The method obtains a dynamic predistortion model through
deep learning, and the model can predict the predistortion
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Fig. 1. AR-HUD produces distortion when the original image is projected onto the windshield. To ensure that the virtual image is not distorted,
the original image should be predistorted. (a) projects the original image directly, causing image distortion, while (b) projects the original image with a
predistortion warping according to the calibration information to correct the distortion in (a).

correction parameters of any viewpoint to achieve image cor-
rection. Compared with traditional methods, neural network
methods have superior generalization ability and processing
efficiency. It helps to eliminate the problems caused by inter-
polation and has broad application. Li et al . [13] proposed
multilayer feedforward neural network model and spatial
continuous mapping (MFNN-SCM) for dynamic distortion
correction of AR-HUD. This method constructs a seven-layer
fully connected network. The network inputs are the view-
point coordinates and the ideal point coordinates, and the
output is the predistorted point coordinates corresponding to
the ideal points. The ideal-distorted point pairs on different
viewpoints are obtained through actual shooting and image
processing, and then linear interpolation is used to obtain the
ideal-predistortion point pairs as the network dataset. Root
mean square error (RMSE) is the loss function for training and
evaluating the model. After training, the model outputs the
predistorted coordinates of the corresponding points of any
viewpoint and generates the predistorted image through for-
ward mapping. This method realizes the distortion correction
for any viewpoint and obtains good imaging results in both the
marked viewpoints and the non-marked viewpoints.

C. Other Works

Head-mounted displays (HMDs) share many similarities with
HUDs as they also use a translucent reflector as a combination to
create virtual images in front of the eyes. There are several meth-
ods [14–16] available for calibrating and correcting vertical
image distortion. As HMDs concern more gaze direction and
the eye position is fixed, it does not provide a useful reference for
the HUD.

Li’s approach generates a predistortion model by predicting
the predistortion coordinates and using forward mapping to
rectify the image. However, in the process of data acquisition,
what we capture through the camera is distorted images, so
interpolation processing is required to obtain predistorted
coordinates, which will introduce additional time consumption
and coordinate errors. In this paper, we propose to directly use
the distortion data to train a distortion model and correct the
image by predicting the distortion coordinates and backward
mapping. Using our pipeline saves time and the cost of data
processing and avoids coordinate errors caused by interpolation.

In addition, the network design and training of previ-
ous methods do not fully reflect the property of distortion.
Distortion in optics refers to the offset between the real image
and the ideal image and generally increases with the field of
view (FOV). Therefore, we first predict the distortion offsets
and then add ideal coordinates to obtain the final distortion
coordinates. In this way, the accuracy of distortion prediction is
improved without increasing the network complexity. Besides,
we propose a loss function design method based on the weight
of the FOV, which can improve the model’s ability to predict
distortion. Our work is prone to realize real-time dynamic dis-
tortion correction in AR-HUD and provide consumers with a
better display experience.

In summary, our contribution includes the following:

1. A direct distortion prediction method based on neural
network for AR-HUD dynamic distortion correction.
The distorted data are used to train the network model,
and the predistorted images are then obtained through
backward mapping. This manner significantly decreases
the computational overhead and avoids the interpolation
errors.

2. We propose to predict the distortion offsets instead of
the distortion coordinates, which improves prediction
accuracy without increasing the network complexity.

3. We propose a loss function based on the weight of FOV.
Different penalties are applied to FOVs to adapt to the
spatial-variance of dynamic distortion.

Experiments show that our methods can reduce time con-
sumption and improve the dynamic distortion correction
effect of AR-HUD. The proposed methods are general and
can be applied in the method of AR-HUD dynamic distortion
correction based on the neural network.

2. METHOD

A. Direct Distortion Model

As shown in Fig. 2(a), the predistortion prediction model of
distortion correction includes HUD dataset construction,
predistortion network training and prediction, and predistorted
image generation. First, multiple distorted images under set
viewpoints are shot to obtain ideal-distortion point pairs. In
order to train the predistortion model, it is necessary to convert
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Fig. 2. Predistortion prediction model for AR-HUD dynamic distortion correction and our proposed direct distortion prediction model. The
predistortion prediction model obtains the ideal-predistortion point pairs to train the model and predicts the predistortion parameters. Our method
directly trains the distortion model, predicts the distortion parameters, and then performs backward mapping to generate a predistorted image.

the ideal-distortion point pairs into ideal-predistortion ones
through interpolation. After training, the predistortion coordi-
nates of each point predicted by the model are used to generate
predistorted images via forward mapping. This method needs
to interpolate distortion point pairs, which increases additional
time and calculation costs and introduces interpolation errors.
In addition, forward mapping may generate hole pixels [17].

To solve these two problems, we propose a direct distortion
prediction model. As shown in Fig. 2(b), we use the ideal-
distorted point pairs to directly train the network model. Unlike
the predistortion model, this model predicts the distortion
coordinates of the input points. When getting each point dis-
tortion coordinates under the input viewpoint, we predistort
the image through backward mapping. It should be noted that
this method does not need to adjust the neural network model
but only uses the distorted data as the training dataset. Figure 3
shows the overall process. The specific data will be shown in
Section 3.

B. Predict the Distortion Offsets

Distortion in optics refers to the deviation from rectilinear
projection in which straight lines of an image appear to be
curved unnaturally. For a two-dimensional image point, it can
be expressed as Eqs. (1) and (2),

δµ=µd −µi , (1)

δν = νd − νi , (2)

where (µi , νi ) are the coordinates of the ideal image point,
(µd , νd ) are the coordinates of the distorted image point, and
(δµ, δν) are the distortion offsets. Generally, the distortion
coordinates are very close to the ideal ones because the distortion
offset is a small value. Figures 4(a) and 4(b) show the ideal image
point coordinates (µi , νi ), Figs. 4(c) and 4(d) show the dis-
torted image point coordinates (µd , νd ), and Figs. 4(e) and 4(f )
show the distortion offsets (δµ, δν). It can be seen that the real
image point surface is similar to the ideal one, and its distortion
cannot be clearly expressed. Obviously, the distortion offset
surface can better represent the distortion of different image
points. For this reason, we optimize the existing network archi-
tecture to predict the distortion offsets instead of the distortion
coordinates.

The network architecture in the general AR-HUD predistor-
tion prediction model is shown in Fig. 5(a). The inputs of the
network are the viewpoint and ideal image point coordinates,
and the output is the predistorted image point coordinates. This
architecture predicts the predistorted coordinates from the ideal
coordinates.

Here we propose to predict the distortion offsets through
the network. Based on Eqs. (1) and (2), we add the input ideal
coordinates to the network output, which means that the net-
work predicts the distortion offsets. Compared with the general
method, our method is more in line with the meaning of dis-
tortion. Experiments prove that this architecture can improve
the prediction accuracy of distortion without complicated data
processing or adjusting the network model. The specific results
are shown in Section 3.

Fig. 3. Schematic diagram of the predistortion prediction model and our proposed direct distortion prediction model.
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Fig. 4. Ideal image point coordinate, real image point coordinate, and distortion offset of the real image point under the same viewpoint. x and y
are the position subscripts. (a) Coordinate value of the ideal image point µi ; (b) coordinate value of the ideal image point νi ; (c) coordinate value of
the real image point νd ; (d) coordinate value of the real image pointµd ; (e) distortion offset of the real image point δµ; (f ) distortion offset of the real
image point δν.

Fig. 5. This figure shows the network structures of predicting the distortion coordinates and distortion offsets. Compared with distortion predic-
tion, the offset prediction network adds the input ideal coordinates to the network output as the final output, which means that the network predicts
the distortion offsets. This improvement provides our method with better performance but the same complexity as previous network.

C. FOV-Weighted Loss Function

The distortion offset of each point is related to the FOV.
Figures 6(a) and 6(b) show the ideal grid points and the distorted
grid points, and Fig. 6(c) shows the percentage of distortion of
different FOVs of these two images. The calculation formula is
shown in Eq. (3),

distortion=

√
δµ2 + δν2

µ2
halfField + ν

2
halfField

, (3)

where µhalfField, νhalfField are the maximum half-FOV in both
µ, ν directions. Here, all the distortions are divided by the
maximum half-FOV because in the AR-HUD projection we are
more concerned about each absolute offset of the distorted pixel.
We can see that, with the increase of the FOV, the percentage
of distortion gradually increases. So, the pixels in the central
FOV need not be corrected or only need a minor correction,
while larger adjustments are required to reduce distortion for the
large FOV. This should be treated differently during network
training.

In Li’s method, the RMSE is used, and the network loss func-
tion is

LMFNN−FCM =
1

m · n

n∑
i=1

m∑
j=1

∥∥∥∥( ûi, j

v̂i, j

)
−

(
ui, j

vi, j

)∥∥∥∥2

, (4)

where µ, ν are ideal coordinate values of grid points, µ̂, ν̂ are
actual coordinate values, m is the number of the viewpoints, and
n is the number of grid points in a single image. This function
adopts the same loss calculation for each point. To reflect atten-
tion to different FOV points, we propose a loss function design
method based on FOV weights. The function is

L′ =L ·Wfield, (5)

Wfieldi, j = α

(
u2

ij/max(u2)

v2
ij/max

(
v2
))+ β, (6)

where L is the initial loss, L′ is the FOV-weighted loss, Wfield

is the weight coefficient related to the FOV, and α and β are
constant items that can be set. This loss function introduces the
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Fig. 6. (a) and (b) are the ideal grid points and the distorted grid points; (c) is the percentage of distortion of different FOVs of these two images.

FOV information into the training process and takes the penalty
for the distortion of different FOVs. The experimental results
show that the network trained by our FOV-weighted loss has
higher prediction accuracy. See Section 3 for specific data.

3. EXPERIMENTAL RESULTS

We will present our experimental results in this section. First, we
use ZEMAX to build an AR-HUD system to obtain distortion
data for training and testing. Then we construct our network
model based on the methods we proposed. Finally, we compare
the accuracy of the distortion prediction and time consumption
with Li’s method.

A. Dataset

In the AR-HUD system environment of ZEMAX simulation,
we used the image simulation function to obtain distorted
images of multiple viewpoints within the eye box for model
training and testing. We select an area in the X − Y plane that
covers typical driver’s eye positions. Since the opening angles of
the virtual image to any viewpoint are relatively small and the
focal length is designed several meters in ARHUDs, the distor-
tion variation is insensitive to the depth shift of viewpoints [9].
As shown in Fig. 7, the size of the eye box is 40× 100 mm, and
the total number of set viewpoints is 5× 11. The data of 3× 3
viewpoints are used for training, and the remaining viewpoints
are used for testing. The input image is the grid points image
shown in Fig. 6(a), the number of dots is 13× 33, and the image
resolution is 1920× 1080. Through image processing steps
such as point recognition and corner sorting, we can obtain the
HUD dynamic distortion dataset,{

E k
x , E k

y , uk
i , v

k
i , uk

d , v
k
d

}
, (k = 1, 2, 3, · · · , n) , (7)

where (E k
x , E k

y ), (u
k
i , v

k
i ), (u

k
d , v

k
d ) are the viewpoint coordi-

nate, ideal point coordinate, and distortion coordinate of the
kth point.

B. Model Construction

We construct the direct distortion prediction model with dis-
tortion offsets prediction and FOV-weighted loss. To better
compare with Li’s method, we use the same MLP as the initial
network. First, as shown in Fig. 2, the initial predistortion model
is changed to a direct distortion prediction model; second,
by adding the input ideal coordinates to the network output,
the network structure is improved to predict distortion off-
sets. Finally, as shown in Eq. (6), the loss function is changed
to the FOV-weighted loss. We used the same optimizer and
hyper-parameters in these models to ensure the fairness of the
experimental results. The results after each step of the methods
are tested, and the predistortion correction effect of the model
on all viewpoints is calculated. Specifically, we re-input the
predistorted image into the HUD as a simulated image and
calculate the distortion percentage as the correction result for
comparison.

C. Experimental Results

The experimental network environment is the Windows sys-
tem, the GPU is RTX 2060, and the experimental platform is
PyTorch. We use Adam with an initial learning rate of 1× 10−3.
The models are trained with a batch size of 429 (the number of
grid points in a single image) for 4500 iterations.

Since distortion offset is a small quantity, we generally use
the percentage of distortion to characterize the distortion of an
image. For the 13× 33 points under each viewpoint, we can
obtain the maximum and average distortion of the viewpoint by
Eq. (3). We also calculated the maximum error and the RMSE of
the actual error (at 1080× 1920 resolution) in µ, ν directions
to more comprehensively test the predistortion correction result
of the model.

Table 1 shows the results of Li’s and our method. We start
experiments with the initial MLP network (Li’s method). In
the first step, we add the direct distortion prediction process to
the model (Model 1); then, we change the network structure to
predict the distortion offsets (Model 2). Finally, we add the FOV
weight to the original MSE-Loss (Model 3). Here max _d%
indicates the maximum distortion (expressed as a percentage),
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Fig. 7. ZEMAX simulation system and samples of the data of 5× 11 viewpoints. The blue viewpoint is the training data, and the red viewpoint is
the test data.

Table 1. Experiment Results of Li’s and Our Method

Model Max Max_d% Mean Max_d% Max Mean_d% Mean Mean_d% MEµ MEν RMSEµ RMSEν

Li’s method 4.79 2.61 2.35 1.06 37.42 14.20 7.24 2.78
Model 1 4.77 2.51 2.03 0.96 37.12 13.17 6.73 2.23
Model 2 1.55 0.99 0.70 0.32 12.00 9.27 1.93 1.24
Model 3 (ours) 1.53 1.00 0.69 0.31 11.74 8.87 1.89 1.22

and mean_d% indicates the average distortion at a certain view-
point. In addition, the maximum and RMSE error of µ and ν
are also shown in Table 1.

Table 1 shows that our methods can improve the predistor-
tion correction accuracy of the AR-HUD. Each method will
improve the accuracy to a certain extent, and the optimal correc-
tion accuracy can be achieved when all three methods are used.
In addition, we can find that the biggest improvement in accu-
racy is predicting the distortion offsets, which can better reflect
the dynamic distortion of HUD. From the data in Table 1, our
method works better both for distortion percentage and actual
pixel error.

To verify that the direct distortion prediction model can
decrease the time consumption, according to the standard in
Fig. 2, we divided the overall process into dataset construction,
network training, and image predistortion and compared the
time consumption of two models.

The data in Table 2 are the average value of multiple exper-
imental results. As shown in Table 2, since the predistortion
prediction model needs to interpolate the distorted image to
obtain a predistorted image and our model directly uses the dis-
torted image, Li’s method takes 8.70 s to construct the dataset
while ours only takes 4.87 s. In the network training phase, the
time used by the two is basically the same because the distortion

Table 2. Time Consumption of Predistortion
Prediction Model and Direct Distortion Prediction
Model

Model
Dataset

Construction
Network
Training

Image
Predistortion

Predistortion
prediction model (Li’s)

8.70 s 162.72 s 26 ms

Direct distortion
prediction model (ours)

4.87 s 162.83 s 22 ms

data or predistortion data does not affect the network itself. In
the image predistortion phase, our method uses a faster back-
ward mapping and only needs 22 ms (for a piece of image at
1920× 1080), compared to Li’s 26 ms. Therefore, Table 2 veri-
fies that the direct distortion prediction model can significantly
reduce the time consumption of the overall process and has
advantages in the distortion correction of AR-HUD, saving the
time consumption and avoiding the coordinate errors in inter-
polation. Predistortion image generation reaches speed in 30 fps
at 1080p in our experimental environment. Theoretically with
4.5 MFLOPs of our model, calculating the distortion parame-
ters of 6× 6 feature points reaches 16.2 ms at 10 GFLOPS. It
will help deploy the network model to on-vehicle systems.
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4. CONCLUSION

This paper proposes a direct distortion prediction method based
on neural network for AR-HUD dynamic distortion correction.
We directly train the neural network with the distorted image
data. The method does not require predistortion interpolation,
saving time consumption and avoiding coordinate errors in
interpolation. Besides, based on the physical priors and char-
acteristics of distortion, we propose to predict the distortion
offsets of each viewpoint in the eye box. Moreover, the proposed
field-of-view weighted loss improves the prediction ability of
the model. Experiments show that, without increasing net-
work complexity and data processing capacity, the proposed
method benefits the prediction accuracy of the neural-based
distortion correction overall. It is helpful to realize real-time cor-
rection of dynamic distortion. In the future, we plan to further
prune and optimize these methods, and deploy them to specific
equipment.
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